K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Nhận thấy x = 0 và y = \(\pm1\) là nghiệm nguyên của phương trình 

+) Với x = 0 

 \(\left(x^3+1\right)^2=x^6+2x^3+1< x^6+3x^3+1=y^4< x^6+4x^3+4=\left(x^3+2\right)^2\)

=> \(x^3+1< y< x^3+2\) (Vô lý) 

+) Với x < 0 

   -) Với x = -1 => y4 = -1 (vô nghiệm)

   -) Với x \(\le-2\)

      \(\left(x^3+2\right)^2< x^6+3x^3+1=y^4< x^6+2x^3+1=\left(x^3+1\right)^2\)

=> \(\left|x^3+2\right|< y^2< \left|x^3+1\right|\)  (Vô lý )

Vậy phương trình có 2 cặp nghiệm thõa mãn đề bài là (0;1) và (0;-1)