K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

Với x = 0 thì \(y=\pm1\)

Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)

Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)

Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)

giải phương trình này, ta được: x = -1 haowcj x = 3

Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)

24 tháng 6 2018

đã xong , xin tích trc rồi ta làm :)

13 tháng 2 2022

-Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=45441263315&q=T%C3%ACm%20nghi%E1%BB%87m%20nguy%C3%AAn%20c%E1%BB%A7a%20ph%C6%B0%C6%A1ng%20tr%C3%ACnh%20sau%C2%A0%5C%28x%5E6%203x%5E2%201%3Dy%5E4%5C%29

13 tháng 2 2022

bt chứ .-. Nhưng mà mình thấy trả lời sai í nên mới đăng :)

ìm số nghiệm nguyên không âm của bất phương trình:
x1 + x2 + x3 + x4 ≤ 17 với điều kiện x≤ 5, x≤ 6 và x≤ 8
Đương nhiên rồi, để khử dấu bất đẳng thức ta phải đặt thêm một biến x5 ≥ 0 để trở thành phương trình nghiệm nguyên.
x1 + x2 + x3 + x4 + x5 = 17 (*)

Tiếp tục như cách làm trên ta gọi:
- Gọi A là tập nghiệm của (*) thỏa mãn x≥ 6
- Gọi B là tập nghiệm của (*) thỏa mãn x≥ 7
- Gọi C là tập nghiệm của (*) thỏa mãn x≥ 9
- Gọi D là tập nghiệm của (*)
- Gọi E là tập nghiệm của (*) thỏa mãn x≤ 5, x≤ 6 và x≤ 8

23 tháng 2 2019

♌Nood_Tgaming♌BoxⒹ(ⓉToán-VănⒷ)✖ bớt spam dùm con