Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
Hệ \(\hept{\begin{cases}x^3+y^3+z^3=3\\x+y+z=3\end{cases}}\)
Ta có : x + y + z = 3
<=> x + y = 3 - z
<=> (x + y)^3 = (3 - z)^3
<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3
<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27
<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27
<=> 3xy(3 - z) + 9z(3 - z) = 24
<=> (3 - z)(xy + 3z) = 8 (*)
Vì x,y,z nguyên nên (*) tương tương với các hệ sau:
{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8
{ xy + 3z = 1 => xy = 1 - 3z = 16
=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4
{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8
{ xy + 3z = -1 => xy = - 1 - 3z = - 34
=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên
{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4
{ xy + 3z = 2 => xy = 2 - 3z = 5
=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm
{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4
{ xy + 3z = - 2 => xy = - 2 - 3z = -23
=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên
{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2
{ xy + 3z = 4 => xy = 4 - 3z = 1
=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1
{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2
{ xy + 3z = - 4 => xy = - 4 - 3z = - 19
=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên
{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1
{ xy + 3z = 8 => xy = 8 - 3z = 2
=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm
{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1
{ xy + 3z = - 8 => xy = - 8 - 3z = - 20
=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5
Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}
Ta có (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
= 5ab(a + b)(a2 - ab + b2) + 10a2b2(a + b) + a5 + b5
= - 10(a2 - ab + b2) - 20ab + a5 + b5
= - 5(2a2 - 2ab + 2b2 + 4ab) + a5 + b5
= - 5(a2 + b2 + c2) + a5 + b5
=> a5 + b5 + c5 = - 5(a2 + b2 + c2) = 30
=> (a2 + b2 + c2) = - 6
Mà a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> ab + bc + ca = - 3 (1)
Ta lại có a + b = - c
<=> a3 + b3 + 3ab(a + b) = - c3
<=> a3 + b3 + c3 = 3abc = 6
<=> abc = 2 (2)
Từ (1) và (2) ta có hệ
\(\hept{\begin{cases}x+y+z=0\\xyz=2\\xy+yz+xz=-3\end{cases}}\)
Vậy x, y, z là nghiệm của pt
A3 - 3A - 2 = 0
Giải phương trình này tìm nghiệm. Vì vai trò x, y, z là như nhau nên sắp sếp ngẫu nhiên 3 nghiệm tìm được sẽ là nghiệm cần tìm
Cho 3 số -1; -1; 2 sắp xếp 3 số đó đi là có nghiệm phương trình đấy
\(\hept{\begin{cases}\left(x+y\right)^2-2xy=3\\\left(x+y\right)\left(x^2-xy+y^2\right)=27\end{cases}}\)
Đặt S = x + y ; P = xy
\(\hept{\begin{cases}S^2-2P=3\\S\left(S^2-2P-P\right)=27\end{cases}}\)
\(\hept{\begin{cases}S^2-2P=3\\S\left(3-P\right)=27\end{cases}}\)
\(\hept{\begin{cases}S^2-2P=3\\3-P=\frac{27}{S}\end{cases}}\)
\(\hept{\begin{cases}S^2-2\left(\frac{3S-27}{S}\right)=3\\P=\frac{3S-27}{S}\end{cases}}\)
\(\hept{\begin{cases}S^3-6S+54=3\\P=\frac{3S-27}{S}\end{cases}}\)
\(\hept{\begin{cases}S^3-6S+51=0\\P=\frac{3S-27}{S}\end{cases}}\)
Tới đây giải như bình thường nha
Ta có: \(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=8\)
Đặt \(c=x+y,a=y+z,b=z+x\Rightarrow abc=8\Rightarrow a,b,c\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\)
giả \(x\le y\le z\Rightarrow c\le b\le a\).
Lại có: \(a+b+c=2\left(x+y+z\right)=6\Rightarrow a\ge2\)
- Với a=2 ta có: \(\hept{\begin{cases}b+c=4\\bc=4\end{cases}\Rightarrow b=c=2\Rightarrow x=y=z=1}\)
- Với a=4 ta có: \(\hept{\begin{cases}b+c=2\\bc=2\end{cases}}\)( ko có nghiệm nguyên)
- Với a=8 ta có: \(\hept{\begin{cases}b+c=-2\\bc=1\end{cases}\Rightarrow b=c=-1\Rightarrow x=-5,y=z=4}\)
Vậy hệ pt có 4 nghiệm: \(\left(1;1;1\right),\left(4;4;-5\right),\left(4;-5;4\right),\left(-5;4;4\right)\)