K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

x,y là số  nguyên tố đúng ko? bn có nhiueeuf câu hỏi nên mik trả lời nhầm.(ko phait thì thui nhé)

20 tháng 11 2019

\(\left(3x^2+6x+3\right)+\left(3y^2+3y+1\right)+y^2-8=0\)

\(\Leftrightarrow3\left(x+1\right)^2+3\left(y+\frac{1}{2}\right)^2-\frac{9}{4}-8=0\)

\(\Leftrightarrow12\left(x+1\right)^2+3\left(y+1\right)^2=41\)

\(\Rightarrow12\left(x+1\right)^2\le41\Rightarrow\left(x+1\right)^2\le3\Rightarrow x+1\in\left\{1;0;-1\right\}\Rightarrow x\in\left\{0;-1;-2\right\}\)

Bạn làm nốt

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

11 tháng 3 2019

\(Pt\Leftrightarrow3x^2+12x+4y^2+3y+5=0\)

Coi pt trên là pt bậc 2 ẩn x 

Ta có : \(\Delta'=36-12y^2-9y-15\)

                 \(=-12y^2-9y+21\)

Pt có nghiệm \(\Leftrightarrow\Delta'=-12y^2-9y+21\ge0\)

                     \(\Leftrightarrow-\frac{7}{4}\le y\le1\)

Mà \(y\inℤ\Rightarrow y\in\left\{-1;0;1\right\}\)

Rồi làm nốt

21 tháng 4 2018

a) (I): Giải bài 9 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xét (d): x + y = 2 hay (d): y = -x + 2 có a = -1; b = 2.

(d’) 3x + 3y = 2 hay (d’): y = -x + Giải bài 9 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9 có a’ = -1 ; b’ = Giải bài 9 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a = a’ ; b ≠ b’ ⇒ (d) // (d’)

⇒ Hệ (I) vô nghiệm.

b) (II): Giải bài 9 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xét: (d): 3x – 2y = 1 hay (d):

Giải bài 9 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

(d’): -6x + 4y = 0 hay (d’):

Giải bài 9 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a = a’ ; b ≠ b’ ⇒ (d) // (d’)

⇒ Hệ (II) vô nghiệm.

Kiến thức áp dụng

+ Xét hệ (I): Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Gọi (d): ax + by = c và (d’): a’x + b’y = c’.

Số nghiệm của hệ (I) phụ thuộc vào vị trí tương đối của (d) và (d’).

    (d) cắt (d’) ⇒ hệ (I) có nghiệm duy nhất.

    (d) // (d’) ⇒ hệ (I) vô nghiệm

    (d) ≡ (d’) ⇒ hệ (I) có vô số nghiệm.

+ Cho đường thẳng (d): y = ax + b và (d’): y = a’x + b’.

    (d) cắt (d’) ⇔ a ≠ a’

    (d) // (d’) ⇔ a = a’ và b ≠ b’

    (d) trùng (d’) ⇔ a = a’ và b = b’.

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

NV
17 tháng 11 2019

\(\Leftrightarrow3\left(x+1\right)^2+4y^2+3y-7=0\)

\(\Leftrightarrow4y^2+3y-7=-3\left(x+1\right)^2\le0\)

\(\Rightarrow4y^2+3y-7\le0\Rightarrow-\frac{7}{4}\le y\le1\)

\(\Rightarrow y=\left\{-1;0;1\right\}\)

Thay lần lượt y vào pt ban đầu thấy chỉ có \(y=1\) thỏa mãn, khi đó \(x=-1\)

17 tháng 11 2019

cảm ơn bn nhìu nhoaaa

7 tháng 8 2016

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\sqrt{2x+1}+x^2-3x+1=0\)

\(\Rightarrow\sqrt{2x+1}=-x^2+3x-1\)

\(\Rightarrow2x+1=x^4-6x^3+11x^2-6x+1\)

\(\Rightarrow x^4-6x^3+11x^2-8x=0\)

\(\Rightarrow x\left(x^3-6x^2+11x-8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^3-6x^2+11x-8=0\left(1\right)\end{cases}}\)

(1) => bấm máy ta nhận đc 1 nghiệm như mà lẻ quá

                                       Vậy có 2 nghiệm

7 tháng 8 2016

\(\sqrt{2x+1}=t\ge0\)\(\Rightarrow x=\frac{t^2-1}{2}\)

thay vài phương trình đã cho và phân tích nhân tử, ta được:

\(pt\rightarrow\left(t+1\right)\left(t^3-t^2-7t+11\right)=0\)

\(\Leftrightarrow t^3-t^2-7t+11=0\text{ (1)}\)\(do\text{ }t+1>0\)

Bấm máy tính thấy phương trình này chỉ có 1 nghiệm âm, do đó ta chứng minh phương trình này ko có nghiệm dương

\(\left(1\right)\Leftrightarrow t\left(t^2-4t+4\right)+3t^2-11t+11=0\)

\(\Leftrightarrow t\left(t-2\right)^2+3\left(t-\frac{11}{6}\right)^2+\frac{11}{12}=0\)

Thấy ngay phương trình này có VT > 0 nên vô nghiệm.

Vậy phương trình đã cho VÔ NGHIỆM.

26 tháng 12 2021

\(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\left(1\right)\\2x^2+xy+4y^2=5\left(2\right)\end{matrix}\right.\)\(với\)\(y=0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}x^2=-4\\2x^2=5\end{matrix}\right.\)\(\left(loại\right)\)

\(y\ne0\) \(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}t^2y^2+2ty^2-3y^2=-4\left(3\right)\\2t^2y^2+ty^2+4y^2=5\left(4\right)\end{matrix}\right.\)

\(\Leftrightarrow5t^2y^2+10ty^2-15y^2=-8t^2y^2-4ty^2-16y^2\)

\(\Leftrightarrow13t^2y^2+14ty^2+y^2=0\)

\(\Leftrightarrow13t^2+14t+1=0\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{13}\\t=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{13}y\left(5\right)\\x=-y\left(6\right)\end{matrix}\right.\)

\(thay\left(5\right)và\left(6\right)\) \(lên\left(1\right)hoặc\left(2\right)\Rightarrow\left(x;y\right)=\left\{\left(1;-1\right);\left(-1;1\right);\left(-\dfrac{1}{\sqrt{133}};\dfrac{13}{\sqrt{133}}\right)\right\}\)

\(pt:x^4-4x^3+x^2+6x+m+2=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-3x^2+6x+m+2=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2-3\left(x^2-2x\right)+m+2=0\left(1\right)\)

\(đặt:x^2-2x=t\ge-1\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-3t=-m-2\)

\(xét:f\left(t\right)=t^2-3t\) \(trên[-1;+\text{∞})\) \(và:y=-m-2\)

\(\Rightarrow f\left(-1\right)=4\)

\(f\left(-\dfrac{b}{2a}\right)=-\dfrac{9}{4}\)

\(\left(1\right)\) \(có\) \(3\) \(ngo\) \(pb\Leftrightarrow-m-2=4\Leftrightarrow m=-6\)

ĐK \(x\ne0\)

Chia cả 2 vế cho \(\frac{1}{x}\)ta được

\(\frac{3}{3x-4+\frac{1}{x}}+\frac{13}{3x+2+\frac{1}{x}}=6\)

Đặt \(3x+\frac{1}{x}=y\)

\(\Rightarrow\frac{3}{y-4}+\frac{13}{y+2}=6\)

\(\Leftrightarrow16y-46=6\left(y-4\right)\left(y+2\right)\)

Đến đây tự giải nhé (Phá ngoặc rồi ghép cặp lại)