Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Tìm nghiệm nguyên dương của phương trình.
a. 13x+3y=50
Nhận thấy 13x≤13.3=39<50 nên x≤3.
+ x=3 thì không tìm được y thoả mãn.
+ x=2 thì y=8.
+ x=1 thì không tìm được y thoả mãn.
+ x=0 thì không tìm được y thoả mãn.
Vậy (x,y)=(2,8).
Ta có (40;31) = 1 nên phương trình có nghiệm nguyên
Tìm nghiệm riêng của pt
40 = 31.1 + 9
31 = 9.3 + 4
9 = 4.2 + 1
\(\Rightarrow40.7+31.\left(-9\right)=1\)
\(\Rightarrow\hept{\begin{cases}x_0=7\\y_0=-9\end{cases}}\)
Vậy phương trình có nghiệm nguyên là \(\hept{\begin{cases}x=7+31t\\y=-9-40t\end{cases}\left(t\in Z\right)}\)
Phương trình 5 x 2 + 21x − 36 = 0 có a + b + c = 5 +21 – 26 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = 1 ; x 2 = - 26 5 . Khi đó B = 5. (x − 1) x + 26 5
Đáp án: C
Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)
a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0
hay m<-1
b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)
chắc là nghiệm nguyên dương chứ nhỉ?Mình giải với nghiệm nguyên nhé:
31y<=280-21>>>y<=8 mà 21x chia hết cho 7,280 chia hết cho 7 suy ra 31y chia hết cho 7 suy ra y=(280-31.7)/21>>x=3
Vậy x=3;y=7