K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

b, Đặt  \(B\left(x\right)=x^2-\dfrac{x}{2}=x\left(x-\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow x=0;x=\dfrac{1}{2}\)Vậy nghiệm đa thức B(x) là x = 0 ; x = 1/2 

c, Đặt \(C\left(x\right)=2x^2+4=2\left(x^2+2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\ne0\\x^2=-2\left(voli\right)\end{matrix}\right.\)Vậy đa thức C(x) vô nghiệm 

d, Đặt \(D\left(x\right)=3x^4+7=0\Leftrightarrow x^4=-\dfrac{7}{3}\left(voli\right)\)

Vậy đa thức D(x) vô nghiệm 

30 tháng 3 2023

a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9

  ⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2

b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7

  A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1

c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0

d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0

⇒ H(x) vô nghiệm

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

a) f(x) = 0 ⇔ 4 - 5x = 0 ⇔  x = \(\dfrac{4}{5}\)

Nghiệm của f(x) là \(\dfrac{4}{5}\)

b)Không có nghiệm vì Với mọi x ∈ R thì \(x^2\) ≥ 0 ⇔ \(x^2\) + 4 ≥ 4 > 0

Do đó \(x^2\) + 4 > 0 hay \(x^2\) + 4 ≠ 0

Vậy f(x) không có nghiệm

9 tháng 4 2021

a/ \(4-5x=0\\\leftrightarrow 5x=4\\\leftrightarrow x=\dfrac{4}{5}\)

Vậy nghiệm của đa thức f(x) là \(\dfrac{4}{5}\)

b/ Vì \(x^2\ge 0\\\to x^2+4\ge 0+4>0\\\to x^2+4>0\ne 0\)

\(\to\) Pt không có nghiệm

Vậy đa thức g(x) không có nghiệm

Bài 4: Cho các đa thức: A(x) = 4x3 + x2 – 2x – 3                                      B(x) = -3x4 + 2x -                  C(x) = - 3x4 - x2 - 4x3 a/ Tính A(x) + B(x) b/ Tìm nghiệm của H(x) = C(x)+ A(x) – B(x) Dạng 3: Hình học Bài 1: Cho tam giác ABC cân tại A ; AB = 5 cm; BC = 8 cm ; đường cao AH; BD là đường trung tuyến; G là trọng tâm tam giác  a/ Tính AH và BG b/ Qua C kẻ đường thẳng d vuông góc với BC , đường thẳng này cắt BD tại E....
Đọc tiếp

Bài 4: Cho các đa thức: A(x) = 4x3 + x2 – 2x – 3

                                     B(x) = -3x4 + 2x -        

         C(x) = - 3x4 - x2 - 4x3

a/ Tính A(x) + B(x)

b/ Tìm nghiệm của H(x) = C(x)+ A(x) – B(x)

Dạng 3: Hình học

Bài 1: Cho tam giác ABC cân tại A ; AB = 5 cm; BC = 8 cm ; đường cao AH; BD là đường trung tuyến; G là trọng tâm tam giác 

a/ Tính AH và BG

b/ Qua C kẻ đường thẳng d vuông góc với BC , đường thẳng này cắt BD tại E. Chứng minh AG = CE

c/ Chứng minh EA song song với CG

Bài 2: Cho ABC cân tại A; AM là đường trung tuyến; BI là đường cao. AM cắt BI tại H, CH cắt AB tại D. 

a/ Chứng minh CD AB 

b/ c/m BD = CI 

c/ c/m DI // BC

d/ Tia phân giác của góc ACH cắt AH tại O. Tính số đo góc ADO

Bài 3: Cho ABC vuông tại A, đường phân giác BK. Kẻ KI vuông góc với BC (IBC)

a/ Chứng minh  ABK = IBK

b/ Kẻ đường cao AH của ABC . C/m AI là tia phân giác của góc HAC

c/ Gọi F là giao điểm của AH và BK. C/m AFK cân và AF<KC

d/ Lấy M thuộc tia AH sao cho AM = AC.  C/m IMIF

MỘT SỐ BÀI NÂNG CAO:

Bài 1: Tính giá trị của đa thức sau biết x+y-2 =0

                    M= x3 +x2y – 2x2 – xy – y2 + 3y +x – 1 

Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau:

                    (x2 – 9)2 +    + 10

Bài 3:Tìm giá trị nhỏ nhất của biểu thức        A = 

Bài 4:Chứng tỏ rằng đa thức H(x) = 2x2 + 6x + 10 không có nghiệm.

HELP ;-;

0
AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

13 tháng 4 2019

a)      A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2

= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12

b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4  +  x2 + 2018 > 0 với mọi x

Vậy đa thức A(x) không có nghiệm.

c) Tìm được P(x) = -2x + 3

6 tháng 5 2018

a) A = 3x\(^4\) + 5x\(^2\)y\(^2\) + 2y\(^4\) + 2y\(^2\)

Đặt x\(^2\) = a, y\(^2\) = b ( a, b ≥ 0 ) khí đó:

a + b = 2

A = 3x\(^4\) + 5x\(^2\)y\(^2\) + 2y\(^4\) + 2y\(^2\)

⇒A = 3a\(^2\) + 5ab + 2b\(^2\) + 2b

⇒A = ( 3a\(^2\) + 3ab ) + ( 2b\(^2\) + 2ab ) + 2b

⇒A = 3a( a + b ) + 2b( a + b ) + 2b

⇒A = ( a + b )( 3a + 2b ) + 2b

⇒A = 2( 3a + 2b ) + 2b

⇒A = 2( 2a + 2b ) + 2a + 2b

⇒A = 4( a + b ) + 2( a + b )

⇒A = 4 \(\times\) 2 + 2 \(\times\) 2

⇒A = 12

9 tháng 5 2018

a) A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2

= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12

b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4 + x2 + 2018 > 0 với mọi x

Vậy đa thức A(x) không có nghiệm.

c) Tìm được P(x) = -2x + 3

3 tháng 5 2023

\(a,N\left(x\right)=x^2+3x^4-2x-x^2+2x^3=3x^4+2x^3+\left(x^2-x^2\right)-2x\\ =3x^4+2x^3-2x\\ P\left(x\right)=-8+5x-6x^3-4x+6=-6x^3+\left(5x-4x\right)+\left(-8+6\right)\\ =-6x^3+x-2\)

Bậc của N(x) là 4

Bậc của P(x) là 3

\(b,P\left(x\right)+N\left(x\right)=3x^4+2x^3-2x-6x^3+x-2\\ =3x^4+\left(2x^3-6x^3\right)+\left(-2x+x\right)-2\\ =3x^4-4x^3-x-2\)

\(c,B\left(x\right)=-2x^2\left(x^3-2x+5x^2-1\right)\\ =\left(-2x^2\right).x^3+\left(-2x^2\right).\left(-2x\right)+\left(-2x^2\right).5x^2+\left(-2x^2\right).\left(-1\right)\\ =-2x^5+4x^3-10x^4+2x^2\\ =-2x^5-10x^4+4x^3+2x^2\)

24 tháng 4 2022

giúp em ạ

 

24 tháng 4 2022

a) A(x) = 2x3 + 5 + x2 - 3x - 5x3 - 4

            = 2x- 5x3  + x2 - 3x + 5 - 4

            = -3x3 + x2 - 3x + 1

    B(x) = -3x4 - x3 + 2x+ 2x + x4 - 4 - x2

            = -3x+ x4 - x3 + 2x- x+ 2x - 4

            = -2x4 - x3 + x2 + 2x - 4

b) 

H(x) = A(x) - B(x)

H(x) = (-3x3 + x2 - 3x + 1) - (-2x4 - x3 + x2 + 2x - 4)

        = -3x3 + x2 - 3x + 1 + 2x4 + x3 - x2 - 2x + 4

        = 2x4 - 3x+ x3 + x2 - x - 3x - 2x + 1 + 4

        = 2x4 - 2x3 -5x + 5