K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)

\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)

Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)

Vậy B(x)  có nghiệm khi x=0

12 tháng 4 2019

\(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)

\(h\left(x\right)+\left(-5x^4+x^2-2x+6\right)-\left(-5x^4+x^3+3x^2-3\right)=-2x^2-x+9\)

\(h\left(x\right)-5x^4+x^2-2x+6+5x^4-x^3-3x^2-3=-2x^2-x+9\)

\(h\left(x\right)-\left(5x^4-5x^4\right)+\left(x^2-3x^2\right)-x^3-2x+\left(6-3\right)=-2x^2-x+9\)

\(h\left(x\right)-0-2x^2-x^3-2x+3=-2x^2-x+9\)

\(h\left(x\right)-x^3-2x^2-2x+3=-2x^2-x+9\)

\(h\left(x\right)+\left(-x^3-2x^2-2x+3\right)=-2x^2-x+9\)

\(h\left(x\right)=\left(-2x^2-x+9\right)-\left(-x^3-2x^2-2x+3\right)\)

\(h\left(x\right)=-2x^2-x+9+x^3+2x^2+2x-3\)

\(h\left(x\right)=\left(-2x^2+2x^2\right)-\left(x-2x\right)+\left(9-3\right)+x^3\)

\(h\left(x\right)=0+x+6+x^3\)

\(h\left(x\right)=x^3+x+6\)

12 tháng 4 2019

d) Ta có : h(x) + f(x) - g(x) = -2x2 - x + 9

         <=> h(x)                   = -2x2 - x + 9 - f(x) + g(x)

         <=> h(x)                   = -2x2 - x + 9 - x2 + 2x + 5x4 - 6 + x3 - 5x4 + 3x2 - 3

         <=> h(x)                   = x3 + x.

Vậy h(x) = x3 + x

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

Cái này có cái VD : x(8 + x^2) nên nó có vẻ hơi bị trìu tượng 1 chút.

Ta có : \(M\left(x\right)=x^3\left(9x^2-1\right)-4x\left(x-1\right)+9x^5-4x^2+7+3x^4\)

\(=9x^5-4x^3-4x^2-4x+9x^5-4x^2+7+3x^4\)

\(=18x^5-4x^3-8x^2-4x+7+3x^4\)

\(N\left(x\right)=10x^2+5x^3-3x^3\left(x+1\right)-x\left(8+x^2\right)+8x-7\)

\(=10x^2+5x^3-3x^4+3x^3-8x-x^3+8x-7\)

\(=10x^2+7x^3-3x^4-7\)

10 tháng 6 2020

a, tự làm

b, 4x3 -x

Ta có:x(4x2-1)=0

=>x=0 hoặc 4x2-1=0

=>x=0 hoặc 4x2=1

=>x=0 hoặc \(x^2=\frac{1}{4}\)

=>x=0 hoặc \(x=\sqrt{\frac{1}{4}}\)

=>x=0 hoặc \(x=\frac{1}{2}\)

Vậy đa thức có 2 nghiệm là x= 0 và \(x=\frac{1}{2}\)

10 tháng 6 2020

a) P(x) + Q(x) = x4 - 3x3 + x2 + 5x + 2 + 3x3 + 5x + 4

                       = x4 + ( 3x3 - 3x3 ) + x2 + ( 5x + 5x ) + ( 4 + 2 )

                       = x4 + x2 + 10x + 6

P(x) - Q(x) = ( x4 - 3x3 + x2 + 5x + 2 ) - ( 3x3 + 5x + 4 ) 

                  = x4 - 3x3 + x2 + 5x + 2 - 3x3 - 5x - 4

                  = x4 + ( -3x3 - 3x3 ) + x2 + ( 5x - 5x ) + ( 2 - 4 )

                  = x4 - 6x3 + x2 - 2

b) H(x) = 4x3 - x 

H(x) = 0 <=> 4x3 - x = 0

             <=> x(4x2 - 1 ) = 0

             <=> x = 0 hoặc 4x2 - 1 = 0

* 4x2 - 1 = 0

4x2 = 1

x2 = 1/4

x = \(\pm\sqrt{\frac{1}{2}}\)

Vậy nghiệm của đa thức là 0 và \(\pm\sqrt{\frac{1}{2}}\)

17 tháng 7 2021

a) \(A\left(x\right)=-1+5x^6-6x^2-5-9x^6+4x^4-3x^2\)

\(\Rightarrow A\left(x\right)=\left(-1-5\right)+\left(5x^6-9x^6\right)-\left(6x^2+3x^2\right)+4x^4\)

\(\Rightarrow A\left(x\right)=-6-4x^6-9x^2+4x^4\)

\(\Rightarrow A\left(x\right)=-4x^6+4x^4-9x^2-6\)

\(B\left(x\right)=2-5x^2+3x^4-4x^2+3x+x^4-4x^6-7x\)

\(\Rightarrow B\left(x\right)=-4x^6+\left(3x^4+x^4\right)-\left(5x^2+4x^2\right)+\left(3x-7x\right)+2\)

\(\Rightarrow B\left(x\right)=-4x^6+4x^4-9x^2-4x+2\)

b) Đa thức A(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là -6.

Đa thức B(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là 2.

17 tháng 7 2021

c) \(C\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-4x^6+4x^4-9x^2-6\right)-\left(-4x^6+4x^4-9x^2-4x+2\right)\)

\(\Rightarrow C\left(x\right)=-4x^6+4x^4-9x^2-6+4x^6-4x^4+9x^2-4x+2\)

\(\Rightarrow C\left(x\right)=\left(-4x^6+4x^6\right)+\left(4x^4-4x^4\right)+\left(-9x^2+9x^2\right)-4x+\left(-6+2\right)\)

\(\Rightarrow C\left(x\right)=-4x-4\)

Xét \(C\left(x\right)=0\) \(\Rightarrow-4x-4=0\) \(\Rightarrow-4x=4\) \(\Rightarrow x=-1\)

Vậy \(C\left(x\right)=-4x-4\) có 1 nghiệm là  \(x=-1\)

24 tháng 4 2019

M(x) = -3x+6

Ta có: -3x+6 = 0

           -3x     = -6

              x     = 3

24 tháng 4 2019

cảm ơn bạn nhìu nha!!!