Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\left(x\right)=-1+5x^6-6x^2-5-9x^6+4x^4-3x^2\)
\(\Rightarrow A\left(x\right)=\left(-1-5\right)+\left(5x^6-9x^6\right)-\left(6x^2+3x^2\right)+4x^4\)
\(\Rightarrow A\left(x\right)=-6-4x^6-9x^2+4x^4\)
\(\Rightarrow A\left(x\right)=-4x^6+4x^4-9x^2-6\)
\(B\left(x\right)=2-5x^2+3x^4-4x^2+3x+x^4-4x^6-7x\)
\(\Rightarrow B\left(x\right)=-4x^6+\left(3x^4+x^4\right)-\left(5x^2+4x^2\right)+\left(3x-7x\right)+2\)
\(\Rightarrow B\left(x\right)=-4x^6+4x^4-9x^2-4x+2\)
b) Đa thức A(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là -6.
Đa thức B(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là 2.
c) \(C\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-4x^6+4x^4-9x^2-6\right)-\left(-4x^6+4x^4-9x^2-4x+2\right)\)
\(\Rightarrow C\left(x\right)=-4x^6+4x^4-9x^2-6+4x^6-4x^4+9x^2-4x+2\)
\(\Rightarrow C\left(x\right)=\left(-4x^6+4x^6\right)+\left(4x^4-4x^4\right)+\left(-9x^2+9x^2\right)-4x+\left(-6+2\right)\)
\(\Rightarrow C\left(x\right)=-4x-4\)
Xét \(C\left(x\right)=0\) \(\Rightarrow-4x-4=0\) \(\Rightarrow-4x=4\) \(\Rightarrow x=-1\)
Vậy \(C\left(x\right)=-4x-4\) có 1 nghiệm là \(x=-1\)
a) Sắp xếp:
M(x) = (-4x) - 5x2 + 6 + 7x3
= 7x3 - 5x2 - 4x + 6
N(x) = 12x2 - 7x3 - 4 - 5x
= -7x3 + 12x2 - 5x - 4
b) Ta có: P(x) = M(x) + N(x) = 7x3 - 5x2 - 4x + 6 - 7x3 + 12x2 - 5x - 4
= 7x3 - 7x3 - 5x2 + 12x2 - 4x - 5x + 6 - 4
= 7x2 - 9x + 2
Vậy P(x) = 7x2 - 9x + 2
Ta có: Q(x) = M(x) - N(x) = 7x3 - 5x2 - 4x + 6 + 7x3 - 12x2 + 5x + 4
= 14x3 - 17x2 + x + 10
Vậy Q(x) = 14x3 - 17x2 + x + 10
c) tại x = 1 ta có đa thức: P(x) = 7.12 - 9.1 + 2 = 7 - 9 + 2 = 0
Vậy x = 1 là một nghiệm của đa thức P(x)
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
Bài 1 :
\(M+N\)
\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)
\(=2xy^2-3x+12-xy^2-3\)
\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)
\(=xy^2-3x+9\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mk xin lỗi nha mk bị ddoootj nhập nik
\(f\left(x\right)+g\left(x\right)=\left(-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3\right)+\left(x^4+...\right)\)
bn chỉ cần nhóm các số hạng của đa thức là ok ngay
cho xl nha@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)= \(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)
=\(-3x^3+x^2+3x\)
B(x)= \(-x^2+7+3x^3-x-5\)= \(-x^2+2+3x^3-x\)
=\(3x^3-x^2-x+2\)
b) A(x) - B(x) = \(-3x^3+x^2+3x\)- \(3x^3+x^2+x-2\)
=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)= \(-6x^3+2x^2+4x-2\)
vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)
c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)+ \(3x^3-x^2-x+2\)= 2x+2
ta có: C(x) = 0 <=> 2x+2=0
=> 2x=-2
=> x=-1
vậy x=-1 là nghiệm của đa thức C(x)
a) A(x)= -3x^3 + x^2 + 3x
B(x)= 3x^3 - x^2 - x +2
b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)
= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2
= -6x^3 + 2x^2 + 4x -2
c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2
C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1
Vậy x=-1 là nghiệm của C(x)
a) Thay \(x=1\)vào đa thức P ta được:
\(P=3.1^3+4.1^2-8.1+1=3+4-8+1=0\)
Vậy \(x=1\)là nghiệm của đa thức
b) \(P=3x^3+4x^2-8x+1=\left(3x^3+3x^2-9x\right)+\left(x^2+x-3\right)+4\)
\(=3x\left(x^2+x-3\right)+\left(x^2+x-3\right)+4=\left(x^2+x-3\right)\left(3x+1\right)+4\)
Thay \(x^2+x-3=0\)vào đa thức P ta được : \(P=4\)
a, tự làm
b, 4x3 -x
Ta có:x(4x2-1)=0
=>x=0 hoặc 4x2-1=0
=>x=0 hoặc 4x2=1
=>x=0 hoặc \(x^2=\frac{1}{4}\)
=>x=0 hoặc \(x=\sqrt{\frac{1}{4}}\)
=>x=0 hoặc \(x=\frac{1}{2}\)
Vậy đa thức có 2 nghiệm là x= 0 và \(x=\frac{1}{2}\)
a) P(x) + Q(x) = x4 - 3x3 + x2 + 5x + 2 + 3x3 + 5x + 4
= x4 + ( 3x3 - 3x3 ) + x2 + ( 5x + 5x ) + ( 4 + 2 )
= x4 + x2 + 10x + 6
P(x) - Q(x) = ( x4 - 3x3 + x2 + 5x + 2 ) - ( 3x3 + 5x + 4 )
= x4 - 3x3 + x2 + 5x + 2 - 3x3 - 5x - 4
= x4 + ( -3x3 - 3x3 ) + x2 + ( 5x - 5x ) + ( 2 - 4 )
= x4 - 6x3 + x2 - 2
b) H(x) = 4x3 - x
H(x) = 0 <=> 4x3 - x = 0
<=> x(4x2 - 1 ) = 0
<=> x = 0 hoặc 4x2 - 1 = 0
* 4x2 - 1 = 0
4x2 = 1
x2 = 1/4
x = \(\pm\sqrt{\frac{1}{2}}\)
Vậy nghiệm của đa thức là 0 và \(\pm\sqrt{\frac{1}{2}}\)