K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

M(x) = -3x+6

Ta có: -3x+6 = 0

           -3x     = -6

              x     = 3

24 tháng 4 2019

cảm ơn bạn nhìu nha!!!

7 tháng 6 2020

\(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=-3x^5+2x^2-2x+3\)

\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)

\(=x^4+2\)

\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-4\)

7 tháng 6 2020

Thu gọn + sắp xếp luôn

P(x) = 3x5 + x4 - 2x2 + 2x - 1

Q(x) = -3x5 + 2x2 - 2x + 3

P(x) + Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) + ( -3x5 + 2x2 - 2x + 3 )

                   = ( 3x5 - 3x5 ) + x4 + ( 2x2 -- 2x2 ) + ( 2x - 2x ) + ( 3 - 1 )

                   = x4 + 2

P(x) - Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) - (  -3x5 + 2x2 - 2x + 3 )

                  = 3x5 + x4 - 2x2 + 2x - 1 + 3x5 - 2x2 + 2x - 3

                  = ( 3x5 + 3x5 ) + x4 + ( -2x2 - 2x2 ) + ( 2x + 2x ) + ( -1 - 3 )

                  = 6x5 + x4 - 4x2 + 4x - 4

18 tháng 6 2020

a) 3x - 1/2

Đa thức có nghiệm <=> 3x - 1/2 = 0

                                <=> 3x = 1/2

                                <=> x = 1/6

Vậy nghiệm của đa thức là 1/6

b) 2x2 - x

Đa thức có nghiệm <=> 2x2 - x = 0

                               <=> x( 2x - 1 ) = 0

                               <=> x = 0 hoặc 2x - 1 = 0

                               <=> x = 0 hoặc x = 1/2

Vậy nghiệm của đa thức là 0 và 1/2

c) 4x2 - 9

Đa thức có nghiệm <=> 4x2 - 9 = 0

                                <=> 4x2 = 9

                                <=> x2 = 9/4

                                <=> x = \(\pm\sqrt{\frac{9}{4}}=\pm\frac{3}{2}\)

Vậy nghiệm của đa thức là \(\pm\frac{3}{2}\)

d) x2 - 4x + 3 

Đa thức có nghiệm <=> x2 - 4x + 3 = 0

                                <=> ( x - 1 )( x - 3 ) = 0

                                <=> x - 1 = 0 hoặc x - 3 = 0

                                <=> x = 1 hoặc x = 3

Vậy nghiệm của đa thức là 1 và 3 

18 tháng 6 2020

câu a) 3x-1/2=0

suy ra: 3x=0+1/2

suy ra:3x=1/2

suy ra:x=1/2:3

suy ra:x=1/6

câu b) 2x mũ 2-x=0

suy ra 2x mũ 2=o+x

mai mik lm tiếp cho

bi h mik buồn ngủ quá

c, x3-2x2+x=0

=> x(x-1)2=0

=>\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

b,4x2-3x-7=(x+1)(4x-7)=0

=>\(\orbr{\begin{cases}x+1=0\\4x-7=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-1\\x=\frac{7}{4}\end{cases}}\)

Cái này có cái VD : x(8 + x^2) nên nó có vẻ hơi bị trìu tượng 1 chút.

Ta có : \(M\left(x\right)=x^3\left(9x^2-1\right)-4x\left(x-1\right)+9x^5-4x^2+7+3x^4\)

\(=9x^5-4x^3-4x^2-4x+9x^5-4x^2+7+3x^4\)

\(=18x^5-4x^3-8x^2-4x+7+3x^4\)

\(N\left(x\right)=10x^2+5x^3-3x^3\left(x+1\right)-x\left(8+x^2\right)+8x-7\)

\(=10x^2+5x^3-3x^4+3x^3-8x-x^3+8x-7\)

\(=10x^2+7x^3-3x^4-7\)

31 tháng 7 2021

b) Ta có (4x - 3)(5 + x) = 0

\(\Rightarrow\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)

Vậy \(x\in\left\{\frac{3}{4};-5\right\}\)là nghiệm đa thức

c) x+ 2x = 0

\(\Rightarrow\)x(x + 2) = 0

\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy \(x\in\left\{0;-2\right\}\)là nghiệm đa thức

d) Ta có : \(\left(x-2\right)^2\ge0\forall x\) 

\(\Rightarrow\left(x-2\right)^2+4\ge4\forall x\)

Vậy đa thức vô nghiệm 

e) x2 - 3x + 2 = 0

\(\Rightarrow x^2-x-2x+2=0\)

\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)

Vậy \(x\in\left\{1;2\right\}\)là nghiệm đa thức

31 tháng 7 2021

Trả lời:

\(b,\left(4x-3\right)\left(5+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}}\)

Vậy x = 3/4; x = - 5 là nghiệm của đa thức.

\(c,x^2+2x=0\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)

Vậy x = 0; x = - 2 là nghiệm của đa thức.

\(d,\left(x-2\right)^2+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=-4\) (vô lí)

Vậy đa thức vô nghiệm.

\(e,x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Vậy x = 2; x = 1 là nghiệm của đa thức.

13 tháng 7 2021

Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3

M(x) = (2x4 - x4) + (5x3 - x3  - 4x3) + (-x2 + 3x2) + 1

M(x) = x4 + 2x2 + 1

a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4

M(-1) = (-1)4 + 2.(-1)2 + 1 = 4

b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0

=> x4  + 2x2 + 1 > 0

=> M(x) > 0

=> M(x) ko có nghiệm

26 tháng 7 2019

\(M\left(x\right)=5x^3+2x^4-x^3+3x^2-x^3-x^4+1-4x^3\)

\(M\left(x\right)=x^4+2x^2+1\)

Dễ thấy: \(\hept{\begin{cases}x^4\ge0\\2x^2\ge0\end{cases}}\Rightarrow x^4+2x^2\ge0\)

\(M\left(x\right)=x^4+2x^2+1\ge1\)

=> đa thức M(x) vô nghiệm

26 tháng 7 2019

Lê Trung HiếuKo bt rút gọn à

\(M\left(x\right)=x^4-x^3+3x^2+1\)

8 tháng 5 2019

1, 3x^2 - 4x - 7 =3x^2+3x-7x-7=3x(x+1)-7(x+1)=(3x-7)(x+1)=0

nhiệm là -1 và 7/3

2,x^3-9x=x(x^2-9)=x(x-3)(x+3)=0

nghiệm là 0, 3 và -3

3,x^3+3x^2+3x+1=(x+1)^3=0

nghiệm là -1

8 tháng 5 2019

Nguyễn Hoàng Long làm kiểu này thì không có được điểm đâu

\(a,\)

\(A\left(x\right)+B\left(x\right)=\left(-5+x^2-4x+3x^3-3x^5\right)+\left(-x^5+2x-2x^3+6x^4-7\right)\)

\(=-5+x^2-4x+3x^3-3x^5-x^5+2x-2x^3+6x^4-7\)

\(=-4x^5+6x^4+x^3+x^2-2x-12\)

\(A\left(x\right)-B\left(x\right)=\left(-5+x^2-4x+3x^3-3x^5\right)-\left(-x^5+2x-2x^3+6x^4-7\right)\)

\(=-5+x^2-4x+3x^3-3x^5+x^5-2x+2x^3-6x^4+7\)

\(=-2x^5-6x^4+5x^3+x^2-6x+2\)

\(B\left(x\right)-A\left(x\right)=\left(-x^5+2x-2x^3+6x^4-7\right)-\left(-5+x^2-4x-3x^3-3x^5\right)\)

\(=-x^5+2x-2x^3+6x^4-7+5-x^2+4x+3x^3+3x^5\)

\(=2x^5+6x^4+x^3-x^2+6x-2\)

\(b,\)

\(thay\)\(x=1\)\(vào\)\(đa\)\(thức\)\(B\left(x\right)\)\(ta\)\(có\)\(:\)

\(B\left(1\right)=-1^5+2\cdot\left(-1\right)-2\cdot\left(-1\right)^3+6\cdot\left(-1\right)^4-7\)

\(=-1-2+2+6-7=-2\)

\(Vậy\)\(x=1\)\(không\)\(là\) \(nghiệm\)\(của\)\(đa\)\(thức\)\(B\left(x\right)\)

\(Bạn\)\(xem\)\(lại\)\(đề\) \(nha\)