K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

31 tháng 3 2020

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

14 tháng 4 2018

 Ta có:  x   +     x   <   (   2   x   +   3   ) (     x   -   1   )

Điều kiện: x ≥ 0

⇔   x   +   x   <   2 x   -   2   x     +   3 x     -   3

⇔ - x < - 3 ⇔ x > 3

Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3

21 tháng 7 2018

Nghiệm chung của hai bất phương trình là 3 ≤ x6.

Vì x ∈ Z nên n ∈ {3; 4; 5}.

5 tháng 3 2017

12 tháng 3 2023

\(\left\{{}\begin{matrix}m\left(x+3\right)\le x+5\\m\left(x+2\right)\ge x+3\end{matrix}\right.\) có nghiệm chung \(\left(1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{x+5}{x+3}\\m\ge\dfrac{x+3}{x+2}\end{matrix}\right.\)

Để 2 pt có 1 nghệm chung thì \(\dfrac{x+5}{x+3}=\dfrac{x+3}{x+2}\)

\(\Leftrightarrow\left(x+5\right)\left(x+2\right)-\left(x+3\right)^2=0\)

\(\Leftrightarrow x^2+7x+10-x^2-6x-9=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Thay \(x=-1\) vào \(\left(1\right):\)

\(\left\{{}\begin{matrix}m\left(-1+3\right)\le-1+5\\m\left(-1+2\right)\ge-1+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m\le4\\m\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le2\\m\ge2\end{matrix}\right.\)

\(\Rightarrow m=2\)

Vậy m = 2 thì bpt trên có nghiệm chung

12 tháng 3 2023

Mình cảm ơn nhiều ạ

 

23 tháng 4 2018

Ta có: (x + 3)(x + 4) > (x - 2)(x + 9) + 25

Û x2 + 7x + 12 > x2 + 7x - 18 + 25

Û x2 + 7x + 12 - x2 - 7x + 18 - 25 > 0

Û 5 > 0

Vì 5 > 0 (luôn đúng) nên bất phương trình vô số nghiệm x Î R.

Đáp án cần chọn là: B

24 tháng 6 2018

Ta có:  x − 3 x − 2 ≥ 0

Điều kiện: x ≥ 2

Bất phương trình tương đương là  x − 3 ≥ 0 x − 2 = 0 ⇔ x ≥ 3 x = 2

Vậy tập nghiệm của bất phương trình là  S = { 2 } ∪ [3;+ ∞ )