Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{7n-8}{2n-3}=>2a=\frac{14n-16}{2n-3}=7\cdot\frac{(2n-3)+5}{2n-3=7+\frac{5}{2n-3}}\)
Để A đặt giá trị lớn nhất khi và chỉ khi 2a đạt giá trị lớn nhất khi và chỉ khi 2n-3 đặt giá trị nguyên dưng nhỏ nhất => 2n-3 = 1 => N = 2
Vậy n=2 là giá trị lớn nhất
Ta có: \(\frac{7n-8}{2n-3}=\frac{6n-9+n-1}{2n-3}=3+\frac{n+1}{2n-3}\)
\(\text{Do}:n\inℤ\Rightarrow N+1>0\Rightarrow\frac{7n-8}{2n-3}\)nhỏ nhất khi: \(\frac{n+1}{2n-3}< 0\Rightarrow2n-3< 0\Rightarrow n< \frac{2}{3}\)
+) Nếu: \(n=0\Rightarrow\frac{7n-8}{2n-3}=\frac{8}{3}\)
+) Nếu: \(n=1\Rightarrow\frac{7n-8}{2n-3}=\frac{7-8}{2-3}=1\)
\(\Rightarrow\frac{7n-8}{2n-3}\)lớn nhất khi = \(\frac{8}{3}\text{ khi}=0\)
Đặt \(A=\frac{7n-8}{2n-3}\), ta có:
\(A=\frac{7n-8}{2n-3}\)
\(\Rightarrow2A=2\left(\frac{7n-8}{2n-3}\right)\)
\(\Rightarrow2A=\frac{14n-16}{2n-3}\)
\(\Rightarrow2A=\frac{7\left(2n-3\right)+5}{2n-3}\)
\(\Rightarrow2A=\frac{7\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=7+\frac{5}{2n-3}\)
Để \(A\) đạt GTLN thì \(2A\) phải đạt GTLN
\(\Rightarrow\frac{5}{2n-3}\) đạt GTLN
\(\Rightarrow2n-3\) là số nguyên dương nhỏ nhất.
- \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Vậy phân số \(\frac{7n-8}{2n-3}\) đạt GTLN là 6 tại \(n=2\).
Ta có: 7n - 2 \(⋮\)2n + 5
<=> 2(7n - 2) \(⋮\)2n + 5
<=> 14x - 4 \(⋮\)2n + 5
<=> 7(2n + 5) - 39 \(⋮\)2n + 5
<=> 39 \(⋮\)2n + 5 (vì 7(2n + 5) \(⋮\)2n + 5)
<=> 2n + 5 \(\in\)Ư(39) = {1; -1; 3; -3; 13; -13; 39; -39}
Lập bảng :
Vậy ...