Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a-1/2a+1 nguyên => 2a-2/2a+1 nguyên
mà 2a-2/2a+1=2a+1-3/2a+1=1-3/2a+1 nguyên
=> 2a+1 thuộc ước 3 như 1,3,-1,-1 từ đó tìm đc a
chúc bạn học giỏi
Bài làm
Để \(\frac{a-1}{2a+1}\in Z\)thì \(a-1⋮2a+1\)
\(\Rightarrow2\left(a-1\right)⋮2a+1\)
\(\Rightarrow2a+1-3⋮2a+1\)
\(\Rightarrow3⋮2a+1\)
\(\Rightarrow2a+1\)là ước của 3
\(\Rightarrow2a+1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow a\in\left\{-1;0;-2;1\right\}\)
Thử lại thấy các giá trị đều thỏa mãn !
A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
TM | TM | TM | TM | TM | TM | TM | TM |
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
-8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 2n-1 |
-3,5 | -1,5 | -0,5 | 0 | 1 | 1,5 | 2,5 | 4,5 | n |
loại | loại | loại | TM | TM | loại | loại | loại |
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
x-1)(x-2)=0
⇒\(\left\{{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
X = - \(\dfrac{101}{a+7}\) (a ≠ - 7)
X \(\in\) Z ⇔ -101 ⋮ a + 7 ⇒ a + 7 \(\in\) Ư(101) = {-101; -1; 1; 101}
Lập bảng ta có:
a + 7 | - 101 | -1 | 1 | 101 |
a | -108 | -8 | -6 | 94 |
Theo bảng trên ta có: a \(\in\) {-108; -8; -6; 94}
Vậy a \(\in\) {-108; -8; -6; 94}
Để t = \(\frac{3x-8}{x-5}\)nguyên
=> 3x - 8 chia hết cho x - 5
=> 3x - 15 + 7 chia hết cho x - 5
=> 3(x - 5) + 7 chia hết cho x - 5
Có 3(x - 5) chia hết cho x - 5
=> 7 chia hết cho x - 5
=> x - 5 thuộc Ư(7)
=> x - 5 thuộc {1; -1; 7; -7}
=> x thuộc {6; 4; 12; -2}
Để T nguyên thì 3x - 8 chia hết cho x - 5
<=> 3x - 15 + 7 chia hết cho x - 5
=> 3(x - 5) + 7 chia hết cho x - 5
=> 7 chia hết cho x - 5
=> x - 5 thuộc Ư(7)={-1;1;-7;7}
Ta có:
x - 5 | -1 | 1 | -7 | 7 |
x | 4 | 6 | -2 | 12 |
\(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
để A là số nguyên thì:
3+\(\frac{21}{n-4}\in Z\Rightarrow n-4\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
\(|a|=b^2\left(b-c\right)\) Ta có : \(|a|\ge0\)
\(\Rightarrow b^2\left(b-c\right)\ge0\)
+) Nếu \(b=0\Rightarrow b^2.\left(b-c\right)=0\)mà \(|a|=b^2\left(b-c\right)\)
\(\Rightarrow|a|=0\)
\(\Rightarrow a=0\)( vô lý vì chỉ có một số = 0 )
\(\Rightarrow b=0\)( loại ) (1)
+) Nếu \(a=0\Rightarrow|a|=0\Rightarrow b^2\left(b-c\right)=0\)
\(\Rightarrow\orbr{\begin{cases}b=0\left(loai\right)\\b-c=0\end{cases}}\)
Nếu b âm, c dương => b-c <0 ( mâu thuẫn )
Nếu b dương, c âm => b-c >0 ( mâu thuẫn )
\(\Rightarrow a=0\)( loại ) (2)
Từ (1) và (2) \(\Rightarrow c=0\)
+) Nếu a dương mà c=0
\(\Rightarrow\)b là âm
\(\Rightarrow b-c< 0\)
\(\Rightarrow b^2\left(b-c\right)< 0\)
mà \(b^2\left(b-c\right)\ge0\) ( mâu thuẫn )
\(\Rightarrow\)a là dương ( loại )
\(\Rightarrow\)a chỉ có thể là âm, b dương và c=0
Vậy a là âm, b là dương và c=0
n thuộc tập hợp -2,-3,-1,-4,4,-9,17,-22
Bạn có thể phân tích cụ thể ra kô