K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2020

\(\text{đen ta }=\left(n+4\right)^2-4\left(4n-25\right)=n^2+116\text{ là số chính phương}\)

đến đây thì là 1 bài đơn giản

27 tháng 11 2015

\(\Delta=\left(n+4\right)^2-4\left(4n-25\right)=n^2+8n+16-16n+100=n^2-8n+116>0\)

Vì hệ số của x2 là 1 nên để PT có nghiệm nguyên thì \(n^2-8n+116\) là số chính phương.

Giả sử \(n^2-8n+116=a^2\Rightarrow a^2-\left(n-4\right)^2=100\Rightarrow\left(a-n+4\right)\left(a+n-4\right)=100\)

Xét các ước của 100 và chú ý: a + n - 4 > a - n + 4. Từ đó tìm ra n.

21 tháng 5 2022

21 tháng 5 2022

khó phết

7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...