Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1/9.27^n=3^n
3^n=3^n
=>n={0;1;2;3...}
Tích nha ^_^ !!!
a) \(n^{51}=n\)
\(\Rightarrow n^{51}-n=0\)
\(n\left(n^{50}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n^{50}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n^{50}=1\end{cases}}\)
\(\Rightarrow n\in\left\{-1;0;1\right\}\)
b) \(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=3^n\)
\(3^{3n-2}=3^n\)
\(\Rightarrow3n-2=n\)
\(3n-n=2\)
\(2n=2\)
\(n=2:2=1\)
c) \(3^{-2}.3^4.3^n=3^7\)
\(3^{n+4-2}=3^7\)
\(3^{n+2}=3^7\)
\(\Rightarrow n+2=7\)
\(\Rightarrow n-7=5\)
d) \(32^{-n}.16^n=2048\)
\(2^{-5n}.2^{4n}=2^{10}\)
\(2^{4n-5n}=2^{10}\)
\(2^{-n}=2^{10}\)
\(\Rightarrow-n=10\)
\(\Rightarrow n=-10\)
#)Giải :
\(\frac{1}{9}.3^4.3^n=3^7\)
\(\frac{1}{9}.81.3^n=3^7\)
\(9.3^n=3^7\)
\(3^2.3^n=3^7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=5\)
#~Will~be~Pens~#
a) 32 . 3n = 35
=> 3n = 35 : 32
=> 3n = 33
=> n = 3
b) (22 : 4) . 2n = 4
=> (4 : 4) . 2n = 4
=> 2n = 4
=> 2n = 22
=> n = 2
c) \(\frac{1}{9}.3^4.3^n=3^7\)
\(\Rightarrow3^{-2}.3^4.3^n=3^7\)
\(\Rightarrow3^{-2+4+n}=3^7\)
\(\Rightarrow3^{2+n}=3^7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=5\)
d) \(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=n\)
\(\Rightarrow3^{-2+3n}=n\)
\(\Rightarrow-2+3n=n\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=1\)
a) Ta có: \(\frac{1}{9}\cdot27^n=3^n\)
\(\Leftrightarrow\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\Leftrightarrow3^{3n}=3^{n+2}\)
\(\Rightarrow3n=n+2\)
\(\Rightarrow n=1\)
b) Ta có: \(3^2.3^4.3^n=3^7\)
\(\Rightarrow3^n=3\)
\(\Rightarrow n=1\)
c) Ta có: \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Leftrightarrow2^n\cdot\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
d) Ta có: \(32^{-n}.16^n=2048\)
\(\Leftrightarrow\frac{1}{2^{5n}}\cdot2^{4n}=2^{11}\)
\(\Leftrightarrow2^{4n}=2^{5n+11}\)
\(\Rightarrow4n=5n+11\)
\(\Rightarrow n=-11\)