Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
\(5n^3-9n^2+15n-27=0\)
\(=\left(5n-9\right)\left(n^2+3\right)\)Vì \(n^2+3>1\)Nên \(5n-9=1\)( vì nếu là số nguyên tố thì chỉ có 2 ước số là 1 và chính nó )
Vậy 5n = 10 => n = 2
Với n = 2 ta có :
\(5n^3-9n^2+15n-27=7\)( nhận )
Nếu không tin bạn cứ tra bảng số nguyên tố đảm bảo có số 7
Để A nguyên thì 5x - 2 chia hết cho x-2
=> 5x - 10 + 8 chia hết cho x-2
Vì 5x - 10 chia hết cho x-2
=> 8 chia hết cho x-2
=> x-2 thuộc Ư(8)
x-2 | x |
1 | 3 |
-1 | 1 |
2 | 4 |
-2 | 0 |
4 | 6 |
-4 | -2 |
8 | 10 |
-8 | -6 |
KL: x thuộc...................
\(4x^4+1=\left[\left(2x^2\right)^2+2.2x^2.1+1^2\right]-2.2x^2.1\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
Để \(4x^4+1\) là số NT khi \(\orbr{\begin{cases}2x^2-2x+1=1\\2x^2+2x+1=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-2x=0\\2x^2+2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x\left(x-1\right)=0\\2x\left(x+1\right)=0\end{cases}}}\)\(\Rightarrow x\in\left\{-1;0;1\right\}\)
Mà \(n\in N\Rightarrow n=\left\{0;1\right\}\)
Với n = 0 thì \(4x^4+1=1\)(ko phải số NT nên loại)
Với \(n=1\) thì \(4n^4+1=5\)(là số NT nên chọn)
Vậy \(n=1\) thì \(4n^4+1\) là số NT
có n^1975 + n^1973 +1 = n^2 . n^1973 + n^1973 + 1 =
n.n^1972.(n^2 + 1 ) + 1.
Có n^1972 và n^ 2 đều có số mũ chẵn. nên ước của đa thức trên chỉ còn n + 1 + 1
mà ta cần (n^1975+n^1973+1) là số chính phương hay x + 1 + 1 là số chính phương thỏa mãn x^1972 =x^2 nên suy ra x = 1.
n1975+n1973+1 nguyên tố khi lớn hơn 1
n1975+n1973+1 ko là số nguyên tố khi n khác 1;0
với n=0 thì BT trên bằng 1 ( loại)
với n = 1 thì BT trên bằng 3 ( nhận )
vậy n=1 thì BT trên là số nguyên tố