Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
\(5n^3-9n^2+15n-27=0\)
\(=\left(5n-9\right)\left(n^2+3\right)\)Vì \(n^2+3>1\)Nên \(5n-9=1\)( vì nếu là số nguyên tố thì chỉ có 2 ước số là 1 và chính nó )
Vậy 5n = 10 => n = 2
Với n = 2 ta có :
\(5n^3-9n^2+15n-27=7\)( nhận )
Nếu không tin bạn cứ tra bảng số nguyên tố đảm bảo có số 7
\(\Leftrightarrow2n^2+6n+6⋮2n-1\)
\(\Leftrightarrow2n^2-n+7n-\dfrac{7}{2}+\dfrac{19}{2}⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{1;0;10;-9\right\}\)
1/ đề sai vd: 2+3=5 là số nguyên tố
2/ \(4x^2-a^2+y^2-16b^2+4xy+8ab\)
\(=\left[\left(2x\right)^2+2.2xy+y^2\right]-\left[a^2+2.4ab-\left(4b\right)^2\right]\)
\(=\left(2x+y\right)^2-\left(a-4b\right)^2\)
\(=\left(2x+y+a-4b\right)\left(2x+y-a+4b\right)\)
3/
\(M=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+5x-x-5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+4x\right)^2-5^2\)
\(=\left(x^2+4x\right)^2-25\)
Vì \(\left(x^2+4x\right)^2\ge0\)
\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
\(\Rightarrow M\ge-25\)
Dấu "=" xảy ra khi x = 0 hoặc x = -4
Vậy Mmin = -25 khi x = 0 hoặc x = -4
3n^3 - 5n^2 + 3n -5 = 3n(n^2+1) - 5(n^2+1) = (n^2+1)(3n-5)
Do biểu thức là số nguyên tố nên n^2 +1 hoặc 3n-5 bằng 1 số còn lại khác 1
TH1 : n^2 + 1 = 1 => n = 0. Thay vào bt có giá trị là -5 ( vô lí do số nguyên tố phải là số > 1 )
TH2 : 3n - 5 = 1 => n = 2 => Thỏa mãn
Vậy bt trên là snt khi và chỉ khi n = 2 và bt bằng 5
cam on nha