K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

Ta có :

\(\left(a+2\right)^2-\left(a-2\right)^2\)

\(=\left(a+2-a+2\right)\left(a+2+a-2\right)\)

\(=4.2a\)

\(=8a\)

\(a\in Z\Leftrightarrow8a⋮4\)

\(\Leftrightarrow\left(a+2\right)^2-\left(a-2\right)^2⋮4\left(đpcm\right)\)

11 tháng 8 2015

n3-n=n(n2-1)=n(n-1)(n+1)

Do n;n+1;n-1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết chio 2 và 1 số chia hết cho 3

=>n(n-1)(n+1) chia hết cho 6

20 tháng 7 2018

3n^3 - 5n^2 + 3n -5 = 3n(n^2+1) - 5(n^2+1) = (n^2+1)(3n-5)

Do biểu thức là số nguyên tố nên n^2 +1 hoặc 3n-5 bằng 1 số còn lại khác 1

TH1 : n^2 + 1 = 1 => n = 0. Thay vào bt có giá trị là -5 ( vô lí do số nguyên tố phải là số > 1 )

TH2 : 3n - 5 = 1 => n = 2 => Thỏa mãn

Vậy bt trên là snt khi và chỉ khi n = 2 và bt bằng 5

20 tháng 7 2018

cam on nha

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

27 tháng 10 2016

a)\(f\left(x\right)=x^4+2x^3-x-2\)

\(=x^4+2x^3+x^2-x^2-x-2\)

\(=\left(x^2+x\right)^2-\left(x^2+x\right)-2\)

Đặt \(x^2+x=t\) ta có:

\(=t^2-t-2\)\(=\left(t-2\right)\left(t+1\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+1\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)\)