K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2015

http://olm.vn/hoi-dap/question/153058.html

Bạn vào đây tham khảo nhé !

2 tháng 12 2015

http://olm.vn/hoi-dap/question/153058.html

****

20 tháng 11 2021
Thủy uuhviyvihv ynm
29 tháng 7 2015

Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:

4n+3 chia hết cho d

2n+3 chia hết cho d => 4n+6 chia hết cho d

=> 4n+6-(4n+3) chia hết cho d

=> 3 chia hết cho d

Giả sử ƯCLN(4n+3; 2n+3) \(\ne\)1

=> 2n+3 chia hết cho 3

=> 2n+3+3 chia hết cho 3

=> 2n+6 chia hết cho 3

=> 2(n+3) chia hết cho 3

=> n+3 chia hết cho 3

=> n = 3k - 3

Vậy để ƯCLN(2n+3; 4n+3) = 1 thì n \(\ne\) 3k-3

10 tháng 5 2021

a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3

                                        => 2.(2n-3)+5\(⋮\)2n-3

   Mà 2.(2n-3)\(⋮\)2n-3

=>5\(⋮\)2n-3

=>2n-3\(\in\)Ư(5)

lập bảng

2n-31-15-5
n214-1

Vậy n \(\in\){-1;1;2;4}

b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0

TH1 2n-3=1

        2n=1+3

       2n=4

        n=4:2

        n=2( chọn)

 Vậy n=2

11 tháng 10 2021

Tính các giới hạn sau:

a) lim n^3 +2n^2 -n+1

b) lim n^3 -2n^5 -3n-9

c) lim n^3 -2n/ 3n^2 +n-2

d) lim 3n -2n^4/ 5n^2 -n+12

e) lim (căn 2n^2 +3 - căn n^2 +1)

f) lim căn (4n^2-3n). -2n

1 tháng 11 2018

a, n + 8 chia hết cho n + 1

=> n + 1 + 7 chia hết cho n + 1

=> 7 chia hết cho n + 1

=> n + 1 \(\in\)Ư ( 7 ) 

Mà Ư(7) = { 1 ; 7 }

+>  n + 1 = 1 => n = 0

+> n + 1 = 7 => n = 6

b, 

2n + 11 chia hết cho n - 3

=> 2n - 6 + 17 chia hết cho n - 3 

=> 17 chia hết cho n - 3

=> n - 3 \(\in\)Ư ( 17 ) 

Mà Ư(17) = { 1 ; 17 }

+>  n - 3 = 1 => n = 4

+> n - 3 = 17 => n = 20

c, 

4n - 3 chia hết cho 2n + 1

=> 4n + 2 - 5 chia hết cho 2n + 1

=> 5 chia hết cho 2n + 1

=> 2n + 1 \(\in\)Ư ( 5 ) 

Mà Ư(5) = { 1 ; 5 }

+>  2n + 1 = 1 => n = 0

+> 2n + 1 = 5 => n = 2

18 tháng 3 2016

a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3

Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3

=> 4n + 1 - 4n - 6 chia hết cho 2n + 3

=> -5 chia hết cho 2n + 3

=> 2n + 3 thuộc {-1; 1; -5; 5}

=> 2n thuộc {-4; -2; -8; 2}

=> n thuộc {-2; -1; -4; 1}

b, Ta có:

\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)

=> 2n + 3 = 1

=> 2n = -2

=> n = -1

+ Lớn nhất xét tương tự