Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=n^2-4n+7\) .
1. Với n = 0 => A = 7 không là số chính phương (loại)
2. Với n = 1 => A = 4 là số chính phương (nhận)
3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)
\(\Rightarrow\left(n-2\right)^2< A< n^2\)
Vì A là số tự nhiên nên \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)
Thử lại, n = 3 => A = 4 là một số chính phương.
Vậy : n = 1 và n = 3 thoả mãn đề bài .
Đặt: n4 + 2n3 + 2n2+ n + 7 = k2 (k \(\in\)N)
<=> (n2 + n)2 + (n2 + n) + 7 = k2
<=> 4(n2 + n)2 + 4(n2 + n) + 28 = 4k2
<=> 4k2 - (2n2 + 2n + 1)2 = 27
<=> (2k - 2n2 - 2n - 1)(2k + 2n2 + 2n + 1) = 27
Do 2k + 2n2 + 2n + 1 > 2k - 2n2 - 2n - 1
Lập bảng
2k + 2n2 + 2n + 1 | 27 | 9 | -1 | -3 |
2k - 2n2 - 2n - 1 | 1 | 3 | -27 | -9 |
(tự tính)
a) A=(n+1)(n+2)(n+3)(n+4)+1
A= (n+1)(n+4)(n+2)(n+3)+1
A=(n2+5n+4)(n2+5n+6)+1
Đặt n2+5n+5 =y ta có:
A=(y-1)(y+1) +1 =y2-1+1=y2
\(\Rightarrow\)A= (n2+5n+5) là 1 số chính phương
b)Đề sai ở chỗ 2017.2018 sửa lại là: 2.2017.2018
Thì A = 20172+20182+2.2017.2018
A = (2017+2018)2
A = 40352 là 1 số chính phương .
`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)`
Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.
`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`
`<=> (n^2+1)(n-1)^2 = a^2`.
Vì `(n-1)^2` chính phương, `a^2` chính phương.
`=> n^2+1` chính phương.
Đặt `n^2+1 = b^2(b in NN)`.
`=> (b-n)(b+n) =1`
Mà `b, n in NN`.
`=> {(b-n=1), (b+n=1):}`
`<=> {(b=1), (n=0):}`
Vậy `n = 0`.
\(n^2+4n+2013=\left(n^2+4n+4\right)+2009=k^2\)
\(\Leftrightarrow\left(n+2\right)^2+2009=k^2\)
\(\Rightarrow\left(k-n-2\right)\left(k+n+2\right)=2009\)
\(\Rightarrow k-n-2\) và \(k+n+2\) là ước của 2009
Ta có các TH
\(\left\{{}\begin{matrix}k-n-2=-1\\k+n+2=-2009\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=-2009\\k+n+2=-1\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=1\\k+n+2=2009\end{matrix}\right.\)
Hoặc
\(\left\{{}\begin{matrix}k-n-2=2009\\k+n+2=1\end{matrix}\right.\)
Giải các hệ trên tìm n