Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ chia hết cho 21 (n ∈ ℕ)
Ta có:
A = 5ⁿ⁺² + 5ⁿ⁺¹ + 5ⁿ
= 5ⁿ.(5² + 5 + 1)
= 5.31 ⋮ 31
Vậy A ⋮ 31
b) Sửa đề: B = 3ⁿ⁺² + 3ⁿ - 2ⁿ⁺² - 2ⁿ
= 3ⁿ(3² + 1) - 2ⁿ.(2² + 1)
= 3.10 + 2ⁿ⁻¹.2.5
= 10.(3 + 2ⁿ⁻¹) ⋮ 10
Vậy B ⋮ 10
Ta có : \(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{(5n+1)(5n+6)}\)
\(=\frac{1}{5}\cdot\left[\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{(5n+1)(5n+6)}\right]\)
\(=\frac{1}{5}\cdot\left[1-\frac{1}{5n+6}\right]=\frac{1}{5}\cdot\frac{5n+6-1}{5n+6}=\frac{1}{5}\cdot\frac{5(n+1)}{5n+6}=\frac{n+1}{5n+6}\)
\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)
a) để M nguyên thì \(\frac{x+2}{3}\in Z\)
\(\Rightarrow x+2⋮3\)
\(\Rightarrow\)x + 2 \(\in\)B ( 3 ) = { ... ; -9 ; -6 ; -3 ; 0 ; 3 ; 6 ; 9 ; ... }
\(\Rightarrow\)x = { ... ; -11 ; -8 ; -5 ; -2 ; 1 ; 4 ; 7 ; ... }
b) để N nguyên thì \(\frac{7}{x-1}\)nguyên
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng ta có :
x-1 | 1 | 7 | -1 | -7 |
x | 2 | 8 | 0 | -6 |
a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)
\(=5^n.51+8.64^n\)
Có \(64\equiv5\) (mod 59)
\(\Rightarrow64^n\equiv5^n\) (mod 59)
\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)
mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)
\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)
b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)
Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)
Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)
\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)
\(\Rightarrow16^n-9^n-7⋮3\) (II)
Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8)
\(\Rightarrow9^n+7⋮8\) mà \(16^n=2^n.8^n⋮8\)
\(\Rightarrow16^n-9^n-7⋮8\) (III)
Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)
Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\)
\(\Rightarrow\) Đpcm
a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n
=5n.51+8.64n=5n.51+8.64n
Có 64≡564≡5 (mod 59)
⇒64n≡5n⇒64n≡5n (mod 59)
⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)
mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)
⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59)