Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3n + 4 = 7n = 7
Vì ở phép tính trên ta đã lượt bỏ n. Nên tổng giảm 10 đơn vị
Tổng của 10:
1 + 0 = 1
=> Số n là:
7 - 1 = 6
=> n = 6
Đs
Ta có : 3n + 4 = 7n = 7
Vì ở phép tinhs trên ta đã loại bỏ n . Nên tổng giảm đi 10 đơn vị
Tổng của 10 :
1 + 0 = 1
= > Số n là :
7 - 1 = 6
= > n = 6
Đáp số :.....................
a) \(n^2-3n+9\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)11 chia het cho \(n-2\)
\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)
\(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)
b) 2n-1 chia hết cho n-2
\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)
\(\Rightarrow3\)chia hết cho \(n-2\)
\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
b)
Để \(2n⋮\left(n-1\right)\)
\(\Rightarrow2.\left(n-1\right)+2⋮\left(n-1\right)\)
\(\Rightarrow2⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\end{matrix}\right.\)
Vậy n=2;n=3 thì \(2n⋮\left(n-1\right)\)
c)
Để \(\left(3n-8\right)⋮\left(n-4\right)\)
\(\Rightarrow3.\left(n-4\right)+4⋮\left(n-4\right)\)
\(\Rightarrow4⋮\left(n-4\right)\)
\(\Rightarrow\left(n-4\right)\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-4=1\Rightarrow n=5\\n-4=2\Rightarrow n=6\\n-4=4\Rightarrow n=8\end{matrix}\right.\)
Vậy với .....................
1)Ta có:
Để a lớn nhất, thỏa mãn =>\(a\le195\)
a+495 chia hết a
và 195-a chia hết a
=>a+495+195-a chia hết d
=>690 chia hết a
=>a là Ư(690) mà \(a\le195\)
\(\Rightarrow a=138\)
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
a, 4n2 - 3n -1 chia hết 4n - 1
=> n(4n - 1 ) -2n -1 chia hết 4n - 1
=> 2n -1 chia hết 4n - 1
=> 4n - 1 + 2n chia hết 4n - 1
=> 2n chia hết 4n - 1
Mà 2n - 1 chia hết 4n - 1
=> 2n - (2n - 1) chia hết 4n - 1
=> 1 chia hết 4n - 1
=> 4n - 1 = 1
=> 4n = 2
=> n = \(\frac{1}{2}\)
Mà n thuộc N
Vậy không có giá trị của n
b, 4n2 -3n -1 chia hết n - 1
=> 4n (n - 1) + n - 1 chia hết n - 1
=> n - 1 thuộc N
=> n thuộc N
Vậy n thuộc N
2.(3n-4)=6n-8 chia hết (2n-1)
6n-8=3(2n-1)-5 chia hết (2n-1)
2n-1 chia hết cho (2n-1) hiển nhiên
=> 5 phải chia hết cho (2n-1)
2n-1 = ước (5) =(-5,-1,1,5)
2n=(-4,0,2,6)
n={-2,0,1,3}
Bài 1
Để phân số ko tồn tại thì (n-2)(n+1)=0
=>n=2 hoặc n=-1
Bài 4:
Để phân số không tồn tại thì (2n-1)(n2+1)=0
=>2n-1=0
hay n=1/2