Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
a)
ta có:
\(\left\{{}\begin{matrix}\dfrac{b-a}{b-a}=1..\forall a\ne b\\\dfrac{b-a}{a.b}=\dfrac{1}{a}-\dfrac{1}{b}..\forall a,b\ne0\end{matrix}\right.\)(*)
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+..+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(\left\{{}\begin{matrix}a=3n-1\\b=3n+2\end{matrix}\right.\)\(\Rightarrow b-a=3..\forall n\)
Thay (*) vào dãy A
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-....+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)=\dfrac{1}{3}\left(\dfrac{3n+2-2}{2.\left(3n+2\right)}\right)=\dfrac{n}{6n+4}=VP\rightarrow dpcm\)
B) tương tự
Bài giải
Ta có: \(7^{2^{4n+1}}\) = (72)4n + 1 (n \(\inℕ^∗\))
= 494n + 1
= 494n.49
= (...01).49
= (...49)
Vậy...
vì sao bạn ra(......01) vậy bạn Trần Công Mạnh
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Ta có\(15-2n⋮n+1\)
\(\Rightarrow17-2\left(n+1\right)⋮n+1\)
\(\Rightarrow17⋮n+1\)
\(\Rightarrow n+1\inƯ\left(17\right)=\left\{1;17\right\}\)
\(\Rightarrow n=\left\{0;16\right\}\)
Ta có \(6n+9⋮4n-1\)
\(\Rightarrow4\left(6n+9\right)⋮4n-1\)
\(\Rightarrow24n+36⋮4n-1\)
\(\Rightarrow6\left(4n-1\right)+42⋮4n-1\)
\(\Rightarrow42⋮4n-1\)
\(\Rightarrow4n-1\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)
mà \(n\in N\Rightarrow n=\left\{1;2\right\}\)
\(\dfrac{5}{3\cdot7}+\dfrac{5}{7\cdot11}+\dfrac{5}{11\cdot15}+...+\dfrac{5}{\left(4n-1\right)\left(4n+3\right)}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\dfrac{4n}{12n+9}\\ =\dfrac{5n}{12n+9}\)
Mk thực sự nghĩ đề hình như bị sai hay sao ấy!
a, 4n2 - 3n -1 chia hết 4n - 1
=> n(4n - 1 ) -2n -1 chia hết 4n - 1
=> 2n -1 chia hết 4n - 1
=> 4n - 1 + 2n chia hết 4n - 1
=> 2n chia hết 4n - 1
Mà 2n - 1 chia hết 4n - 1
=> 2n - (2n - 1) chia hết 4n - 1
=> 1 chia hết 4n - 1
=> 4n - 1 = 1
=> 4n = 2
=> n = \(\frac{1}{2}\)
Mà n thuộc N
Vậy không có giá trị của n
b, 4n2 -3n -1 chia hết n - 1
=> 4n (n - 1) + n - 1 chia hết n - 1
=> n - 1 thuộc N
=> n thuộc N
Vậy n thuộc N