Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt n2 + n + 43 = a2
4n2 + 4n + 172 = 4a2
( 2n + 1 )2 + 171 = 4a2
( 2n + 1 )2 - 4a2 = - 171
( 2n + 1 - 2a ) ( 2n + 1 + 2a ) = -171
tới đây lập bảng mà làm
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$
$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$
$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.
Với n = 1 thì \(n^2-n+2=2\) không là số chính phương.
Với n = 2 thì \(n^2-n+2=4\)là số chính phương
Với n > 2 thì \(n^2-n+2\)không là số chính phương vì :
\((n-1)^2< n^2-(n-2)< n^2\)
Để \(\sqrt{n^2+n+20}\) là số hữu tỷ thì \(n^2+n+20\) phải là số chính phương.
\(n^2+n+20=x^2\left(x\in N\right)\)
Ta có:
\(n^2< n^2+n+20< \left(n+5\right)^2\)
\(\Rightarrow\left(n^2+n+20\right)=\left[\left(n+1\right)^2;\left(n+2\right)^2;\left(n+3\right)^2;\left(n+4\right)^2\right]\)
\(\Rightarrow n=19\)
hahaha bọn mày ơi
vào trang chủ của : Edward Newgate đê
hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))
Dễ dàng CM được: \(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)-5\left(n-1\right)n\left(n+1\right)\)
Do đó: \(n^5-n⋮3\)(tích 3 số nguyên liên tiếp)
=> \(n^5-n+2\)chia 3 dư 2
Mà số chính phương chia 3 dư 0 hoặc 1
Vậy không tồn tại số n thả mãn