Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=\(\frac{6n-4}{2n+3}=\frac{6n+9-5}{2n+3}=3-\frac{5}{2n+3}\)
Để A nguyên thì 2n+3 \(\in\)Ư (5) ={\(\pm1;\pm5\)}
thay lần lượt vào để tìm n nha bn
để B=10n-3/4n-10 đạt GTLN
=>4n-10 đạt GTNN-đặt T=4n-10
=>4n\(\ge\)0
=>4n-10\(\ge0-10\)
=>T\(\ge\)-10
tự làm tiếp ...
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
cho phan so A= (6n- 1)/3n+2
tim n thuocZ de a co gia tri nguyen
tim n thuoc Z de a co gia tri lon nhat
câu GTLN nè:
A= \(2-\frac{5}{3n+2}\) => hiệu lớn nhất <=> số trừ: \(\frac{5}{3n+2}\) bé nhất vì 3n+2 thuộc Ư(5) nên ta xét:
* 3n+2=-1 => 5/-1=-5
* 3n+2=1 => 5/1=5
* 3n+2=5 => 5/5=1
* 3n+2=-5 => 5/-5=-1
=> 3n+2=-1 là nhỏ nhất <=> n= -1 (t/m đk)
Vì |y + 3| luôn lớn bằng 0 với mọi y
=> 100 - |y + 3| luôn bé bằng 0
=> B luôn bé bằng 0
Dấu "=" xảy ra <=> |y + 3| = 0
=> y + 3 = 0
=> y = -3
Vậy Max B = 100 tại y = -3
Ta có - |y - 3| < 0
=> B = 100 - |y - 3| < 100
GTLN của B là 100 <=> |y - 3| = 0 <=> y = 3
A=(2n-4+1)/(n-2)= 2 + 1/(n-2)
Để A đạt giá trị lớn nhất thì (n-2) phải là số nguyên dương và đạt giá trị nhỏ nhất.
=> n-2 =1
=> n=3
Đs: n=3
GTNN là -2009 <=> x = 2; y = 3
C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ
Vì - / x-2/ </0
và - / y -3/ </ 0
=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009
Max C = -2009 khi x -2 =0 => x =2 và y -3 =0 => y =3