K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2022

\(M=\dfrac{10n+25}{2n+4}=\dfrac{5\left(2n+5\right)}{2n+4}=5\cdot\dfrac{2n+4}{2n+4}+\dfrac{1}{2n+4}\)

để M ∈ Z

=> \(2n+4\inƯ\left\{1\right\}=\left\{-1;1\right\}\)

\(=>\left\{{}\begin{matrix}2n+4=1\\2n+4=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n=-3\\2n=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n=-\dfrac{3}{2}\\n=-\dfrac{5}{2}\end{matrix}\right.\) thì M ∈Z

8 tháng 5 2023

A = \(\dfrac{2n^2+n+1}{n}\) ( n #0)

Gọi ước chung của ớn nhất của 2n2 + n + 1 và n là d

Ta có: \(\left\{{}\begin{matrix}2n^2+n+1⋮d\\n⋮d\end{matrix}\right.\)  ⇒  1 ⋮ d ⇒ d = 1

Vậy ước chung lớn nhất của 2n2 + n + 1 và n là 1 

hay phân số \(\dfrac{2n^2+n+1}{n}\) là phân số tối giản ( đpcm)

\(2n-1⋮n+1\)

\(\Rightarrow2\left(n+1\right)-3⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n+1=1;-1;3;-3\)

\(\Rightarrow n=0;-2;2;-4\)

1 tháng 4 2020

Ta có 2n-1=(2n+2)-3=2(n+1)-3

Vì theo bài ra 2n-1 chia hết cho n+1 nên 2(n+1)-3 cũng chia hết cho n+1

Mà 2(n+1) chia hết cho n+1 nên 3 chia hết cho n+1

=>n+1 thuộc Ư(3)

=> Ta xét bảng sau

n+11-13-3
n0-22-4

Vậy tìm được n=0;-2;2;-4

nhớ tích đúng cho mình nha chúc bn học tốt

    
5 tháng 7 2016

Để n + 3 / n - 2 thuộc Z thì n + 3 chia hết n - 2

<=> n - 2 + 5 chia hết n - 2

=> 5 chia hết n - 2

=> n - 2 thuộc Ư(5) = {-1;1;-5;5}

=> n = {1;3;-3;7}

\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}\)

\(=\frac{3\left(2n-1\right)+8}{2n-1}\)

\(=3+\frac{8}{2n-1}\)

Để B nguyên thì \(2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Rồi bạn cứ thế vào . Trường Hợp ở đây là : \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)

Ta có : \(2n-1=1\Rightarrow n=1\)

\(2n-1=-1\Rightarrow n=0\)

\(2n-1=2\Rightarrow n=1,5\)

\(2n-1=-2\Rightarrow n=-0,5\)

\(2n-1=4\Rightarrow n=2,5\)

\(2n-1=-4\Rightarrow n=-1,5\)

\(2n-1=8\Rightarrow n=4,5\)

\(2n-1=-8\Rightarrow n=-3,5\)

5 tháng 8 2016

Để B nguyên thì 6n + 5 chia hết cho 2n - 1

=> 6n - 3 + 8 chia hết cho 2n - 1

=> 3.(2n - 1) + 8 chia hết cho 2n - 1

Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1

Mà 2n - 1 là số lẻ => \(2n-1\in\left\{1;-1\right\}\)

=> \(2n\in\left\{2;0\right\}\)

=> \(n\in\left\{1;0\right\}\)