Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
B1 :a) <=> 3-2x-1=4-x+3
<=> 3-1-4-3=-x+2x
<=>x=-5
b) <=> 4x>16+5
<=>4x>21
<=>x>21/4
c) <=> -x<21-5
<=>-x<16
<=> x>16
B2 :
A =3(X-2)^2-5
Ta có (x-2)^2 > 0
=>3(x-2)^2 > 0
=> 3(x-2)2 -5 > -5
=> A > -5
=> Min A=-5 <=> x=2
a) \(\begin{array}{l}(8{x^3} + 2{x^2} - 6x):(4x) = 8{x^3}:(4x) + 2{x^2}:(4x) - (6x):(4x)\\ = (8:4).({x^3}:x) + (2:4).({x^2}:x) - (6:4).(x:x)\\ = 2{x^2} + \dfrac{1}{2}x - \dfrac{3}{2}\end{array}\)
b) \(\begin{array}{l}(5{x^3} - 4x):( - 2x) = 5{x^3}:( - 2x) - 4x:( - 2x) = (5: - 2).({x^3}:x) - (4: - 2).(x:x)\\ = - \dfrac{5}{2}{x^{3 - 1}} - ( - 2) = - \dfrac{5}{2}{x^2} + 2\end{array}\)
c) \(\begin{array}{l}( - 15{x^6} - 24{x^3}):( - 3{x^2}) = ( - 15{x^6}):( - 3{x^2}) + ( - 24{x^3}):( - 3{x^2})\\ = ( - 15: - 3).({x^6}:{x^2}) + ( - 24: - 3).({x^3}:{x^2})\\ = 5.{x^{6 - 2}} + 8.{x^{3 - 2}} = 5{x^4} + 8x\end{array}\)
a, \(x^2+4x-5=x^2+2x+2x+4-9\)
\(=\left(x^2+2x\right)+\left(2x+4\right)-9\)
\(=x.\left(x+2\right)+2.\left(x+2\right)-9\)
\(=\left(x+2\right)^2-9\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-9\ge-9\) với mọi giá trị của \(x\in R\).
Để \(\left(x+2\right)^2-9=-9\) thì \(\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy.......
b, \(4x^2+4x-3=4x^2+2x+2x+1-4\)
\(=2x.\left(2x+1\right)+\left(2x+1\right)-4\)
\(=\left(2x+1\right)^2-4\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-4\ge-4\) với mọi giá trị của \(x\in R\).
Để \(\left(2x+1\right)^2-4=-4\) thì \(\left(2x+1\right)^2=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy.........
c, \(x^2+x+1=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=x.\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}.\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).
Để \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\) thì \(\left(x+\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy.........
Chúc bạn học tốt!!!
Các câu còn lại làm tương tự!!
a) A = x2 + 4x - 5
A = x2 + 4x + 4 +1 = ( x + 2 )2 + 1 \(\ge\) 1 với mọi x
MinA = 1 khi và chỉ khi x = -2
b) B = 4x2 + 4x - 3
B = 4x2 + 4x + 1 - 4
B = ( 2x+1 )2 - 4 \(\ge\) -4 với mọi x
MinB = -4 khi và chỉ khi x = \(\dfrac{-1}{2}\)
c) C = x2 + x + 1
C = x2 + x + \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)
C = ( x + \(\dfrac{1}{2}\) )2 + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{3}{4}\) với mọi x
MinC = \(\dfrac{3}{4}\) khi và chỉ khi x = \(-\dfrac{1}{2}\)
d) D = 2x2 + 4x + 8
D = 2 . ( x2 + 2x + 4 )
D = 2. ( x2 + 2x + 1 + 3 )
D = 2. \(\left[\left(x+1\right)^2+3\right]\)
D = 2.( x+1 )2 + 6 \(\ge\) 6 với mọi x
MinD = 6 khi và chỉ khi x = -1
e) E = x2 + x
E = x2 + x + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\)
E = \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\) \(\ge\) \(-\dfrac{1}{4}\) với mọi x
MinE = \(-\dfrac{1}{4}\) khi và chỉ khi x = \(\dfrac{-1}{2}\)