K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8 2020

\(A=\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\ge\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}=\frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}\)

\(A_{min}=\frac{3}{2}\) khi \(x=4\)

\(B=\frac{x+3+2\sqrt{x}}{\sqrt{x}}\ge\frac{2\sqrt{3x}+2\sqrt{x}}{\sqrt{x}}=2\sqrt{3}+2\)

\(B_{min}=2\sqrt{3}+2\) khi \(x=3\)

Xem lại đề câu C, với \(x>0\) thì \(C_{min}\) ko tồn tại

4 tháng 8 2020

Bạn ơi cho mình hỏi tại sao \(\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\)lại lớn hơn hoặc bằng \(\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}\)vậy ạ?

8 tháng 8 2019

ai giúp mình với ạ ngaingung

30 tháng 6 2021

a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\sqrt{a}-\sqrt{b}\) (vì a > b > 0)

b) \(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}.\sqrt{x-3}}{\sqrt{\left(\sqrt{x}+\sqrt{3}\right)\left(\sqrt{x}-\sqrt{3}\right)}}=\frac{\sqrt{3\left(x-3\right)}}{\sqrt{x-3}}=\sqrt{3}\)

c) \(2y^2\sqrt{\frac{x^4}{4y^2}}=2y^2\cdot\frac{x^2}{-2y}=-x^2y\) (vì y < 0)

d) \(\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)(vì x > 0)

e) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\) (Vì x < 0, y > 0)

17 tháng 8 2021

\(\dfrac{x+5}{\sqrt{x}+2}\) + 11= \(\dfrac{x-4}{\sqrt{x}+2}\)+\(\dfrac{9}{\sqrt{x}+2}\)+11=\(\sqrt{x}\)-2+11+\(\dfrac{9}{\sqrt{x}+2}\)=\(\sqrt{x}\)+2+\(\dfrac{9}{\sqrt{x}+2}\)+9

lớn hơn hoặc bằng 15 khi và chỉ khi x=3

       Câu b bn giải tương tự nhébanh

13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((

Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)

\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)

Dạng 1. Đưa về bất phương trình Bài 1. Cho B = \(\frac{2\sqrt{x}+1}{\sqrt{x}++1}\) với x ≥ 0. Tìm x để B \( \frac{3}{2}\) Bài 2. Cho C = \(\frac{2}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1. Tìm x để C ≤ 1 Bài 3. Cho D = \(\frac{2\sqrt{x}-4}{x}\) với x > 0. Tìm x để D ≥ \(\frac{1}{4}\) Bài 4. Cho P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\) với x ≥ 0. a) Tìm x để \(\left|P\right|=P\) ; b) Tìm x để \(\left|P\right|=-P\) Bài 5. Cho Q = \(\frac{3\sqrt{x}}{\sqrt{x}+3}\) với x...
Đọc tiếp

Dạng 1. Đưa về bất phương trình

Bài 1. Cho B = \(\frac{2\sqrt{x}+1}{\sqrt{x}++1}\) với x ≥ 0. Tìm x để B \(< \frac{3}{2}\)

Bài 2. Cho C = \(\frac{2}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1. Tìm x để C ≤ 1

Bài 3. Cho D = \(\frac{2\sqrt{x}-4}{x}\) với x > 0. Tìm x để D ≥ \(\frac{1}{4}\)

Bài 4. Cho P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\) với x ≥ 0. a) Tìm x để \(\left|P\right|=P\) ; b) Tìm x để \(\left|P\right|=-P\)

Bài 5. Cho Q = \(\frac{3\sqrt{x}}{\sqrt{x}+3}\) với x ≥ 0. Tìm x để :

a) Q2 ≥ Q ; b) Q2 < Q ; c) Q2 - 2Q < 0 ; d) Q < \(\sqrt{Q}\)

Dạng 2. Chứng minh

Bài 1. Cho A = \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\) với x ≥ 0, x ≠ 1. Chứng minh A < \(\frac{1}{3}\)

Bài 2. Cho B = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) với x > 0, x ≠ 9. Chứng minh B < \(\frac{1}{3}\)

Bài 3. Cho C = \(\frac{3\sqrt{x}+2}{x+\sqrt{x}+3}\) với x > 0. Chứng minh C ≤ 1.

0
3 tháng 8 2017

Mới đc câu a ak, thog cảm nha, trih độ mih thấp lắm:

\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}\)

=\(\frac{a+\sqrt{ab}-\sqrt{ab}+b}{a-b}-\frac{2b}{a-b}\)

=\(\frac{a+b-2b}{a-b}=\frac{a-b}{a-b}=1\)

3 tháng 8 2017

bùn ngủ , mai lm câu b cho nha