Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuyet Anh Nguyen
1.a)(3x-2)(4x+5)=0
12x^2+7x-10=0>>x1=2/3,x2=-5/4
b)4x^3+2x^2+4x+2=0>>x=-1
c)0,23x^2-4,21x-13,8=0>>x1=21,14,x2=-2,8...
d)10x^3-13x^2-178x-35=0>>x1=5,x2=-1/5
b2/a)2x^3+5x^2-3x=0>>x1=1/2,x2=-3
b)(3x-1)(x^2-7x+12)=0>>x1=1/3,x2=4,x3=...
b3/
a)x^2+x-2=0>>x1=1,x2=-2
b)x1=-1,x2=-6
b4/a)0,5x^2-1,5x-1,5x^2+x+4,5x-3=0>>-x...
b)3x/7-1=3x/7-x>>x=1
c)2x^2-13x+15=0>>x1=5,x2=3/2
P/s: Tham khảo nha
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
a, \(3x^3-5x^2-x-2>0\)
\(< =>3x^3+x^2+x-6x^2-2x-2>0\)
\(< =>x\left(3x^2+x+1\right)-2\left(3x^2+x+1\right)>0\)
\(< =>\left(x-2\right)\left(3x^2+x+1\right)>0\)
có \(3x^2+x+1=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{3}\right)=3\left[x^2+2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{35}{36}\right]\)
\(=3\left[\left(x+\dfrac{1}{6}\right)^2+\dfrac{35}{36}\right]>0=>x-2>0< =>x>2\)
b, \(A=2x^2+y^2-2xy-2x+3\)
\(A=x^2-2xy+y^2+x^2-2x+1+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)
dấu"=" xảy ra<=>\(x=y=1\)
a: x<5 thì 5-x>0
A=5x+5-x+5=4x+10
b: Khi x>=0 thì \(B=5x+10+3x=8x+10\)
Khi x<0 thì B=5x+10-3x=2x+10
d: Khi x>=3 thì \(D=x-3-3x+15=-2x+12\)
Khi x<3 thì D=3-x-3x+15=-4x+18
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
a) Đặt A = \(x^2-3x+3\)
\(\Rightarrow A=x^2-3x+2,25+1,5\)
\(\Rightarrow A=\left(x-1,5\right)^2+1,5\)
Ta có: \(\left(x-1,5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1,5\right)^2+1,5\ge1,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(x=1,5\)
Vậy \(MIN\) \(A=1,5\) \(\Leftrightarrow\) \(x=1,5\)
b) Đặt \(B=x^2+5x+5\)
\(\Rightarrow B=x^2+5x+6,25-1,25\)
\(\Rightarrow B=\left(x+2,5\right)^2-1,25\)
Ta có: \(\left(x+2,5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2,5\right)^2-1,25\ge-1,25\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2,5\)
Vậy \(MIN\) \(B=-1,25\Leftrightarrow x=-2,5\)