K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

NV
26 tháng 7 2021

Với \(x=0\) ko phải nghiệm

Với \(x\ne0\) chia 2 vế cho \(x^2\) ta được:

\(x^2+\dfrac{1}{x^2}+3x+\dfrac{3}{x}+m=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)+m-2=0\) (1)

Đặt \(x+\dfrac{1}{x}=t\Rightarrow x^2-tx+1=0\) (2)

(2) có 2 nghiệm pb khi và chỉ khi:

\(\Delta=t^2-4>0\Rightarrow\left[{}\begin{matrix}t>2\\t< -2\end{matrix}\right.\)

Khi đó (1) trở thành:

\(t^2+3t+m-2=0\) (3)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (3) có 2 nghiệm pb thỏa mãn \(\left[{}\begin{matrix}t>2\\t< -2\end{matrix}\right.\)

(3) \(\Leftrightarrow t^2+3t-2=-m\)

Đặt \(f\left(t\right)=t^2+3t-2\)

\(f\left(-2\right)=-4\) ; \(f\left(2\right)=8\)

Đồ thị hàm \(f\left(t\right)\):

undefined

Từ đồ thị ta thấy \(y=-m\) cắt \(y=f\left(t\right)\) tại 2 điểm đều nằm ngoài \(\left[-2;2\right]\) khi và chỉ khi:

\(\left[{}\begin{matrix}-\dfrac{17}{4}< -m< -4\\-m>8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4< m< \dfrac{17}{4}\\m< -8\end{matrix}\right.\)

26 tháng 7 2021

thầy cho em hỏi làm mấy dạng tìm điều kiện này thạo thì nên học qua tư liệu nào ? Thầy có thể cho e một số file chuyên đề về mấy dạng này đc không?

NV
22 tháng 11 2019

a/ Chắc là bạn ghi nhầm đề? Số cuối là số 9 mới đúng, chứ 27 thì câu này vô nghiệm

\(x^4+4x^3+4x^2+8x^2+12x+27=0\)

\(\Leftrightarrow x^2\left(x+2\right)^2+8\left(x+\frac{3}{4}\right)^2+\frac{45}{2}=0\)

Vế phải dương nên pt vô nghiệm

b/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:

\(x^2+\frac{1}{x^2}-5\left(x-\frac{1}{x}\right)+6=0\)

Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)

\(\Rightarrow a^2+2-5a+6=0\)

\(\Leftrightarrow a^2-5a+8=0\Rightarrow\) pt vô nghiệm

Lại nhầm đề nữa???? Dấu thứ 2 là dấu + thì pt này có nghiệm đẹp

23 tháng 11 2019

v để mình xem lại .. ==

9 tháng 3 2021

có thể ghi đề rõ hơn được không

 

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

16 tháng 11 2021

\(hình\) \(như\) \(sai\) \(bn\) \(ạ\) \(vì:m=-2\Rightarrow\left\{{}\begin{matrix}\left(1\right):x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x1=1\\x2=-2\end{matrix}\right.\\\left(2\right)x^2-2x+1=0\Rightarrow\left[{}\begin{matrix}x1=1\\x2=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow S1\ne S2\Rightarrow\left(1\right)\ne\left(2\right)\)

\(x^2+x+m=0\left(1\right)\)

\(x^2+mx+1=0\left(2\right)\)

\(tương\) \(đương\) \(TH1:\left(1\right)\left(2\right)vô-nghiệm\Leftrightarrow\left\{{}\begin{matrix}\Delta1< 0\\\Delta2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-4m< 0\\m^2-4< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{4}\\-2< m< 2\end{matrix}\right.\)\(\Leftrightarrow\dfrac{1}{4}< m< 2\)

\(TH2:\left(1\right)\left(2\right)có-ngo-kép-chung\)

\(\left(2\right)\Rightarrow\Delta=0\Rightarrow m^2-4=0\Leftrightarrow m=\pm2\Rightarrow\left(1\right):x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x1=1\\x2=-2\end{matrix}\right.\left(ktm\right)\)

\(với:m=2\Rightarrow\left(1\right):x^2+x+2=0\left(vô-ngo\right)\)

\(\Rightarrow\dfrac{1}{4}< m< 2\) \(thì....\)

 

16 tháng 11 2021

\(\left(1\right)\Leftrightarrow m=-x^2-x\)

Thay vào (2)

\(\left(2\right)\Leftrightarrow x^2-\left(x^2+x\right)x+1=0\\ \Leftrightarrow1-x^3=0\\ \Leftrightarrow\left(1-x\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow x=1\left(x^2+x+1>0\right)\\ \Leftrightarrow m=-1-1=-2\)