Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số đương nhiên xác định với mọi x, hình như bạn ghi nhầm đề ở đâu đó
1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.
Bạn tham khảo:
Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24
Ớ anh ơi, nhấn vô cái link tham khảo nó lại ra đúng link của câu này ạ :(
Hàm xác định trên R khi và chỉ khi:
\(sin^4x+cos^4x+4sinx.cosx+m-5\ge0;\forall m\)
\(\Leftrightarrow sin^4x+cos^4x+4sinx.cosx-5\ge-m;\forall m\)
\(\Leftrightarrow-m\le\min\limits_{x\in R}f\left(x\right)\)
Với \(f\left(x\right)=sin^4x+cos^4x+4sinx.cosx-5\)
Ta có:
\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+4sinx.cosx-5\)
\(=-\dfrac{1}{2}\left(2sinx.cosx\right)^2+2sin2x-4\)
\(=-\dfrac{1}{2}sin^22x+2sin2x-4\)
\(=\dfrac{1}{2}\left(-sin^22x+4sin2x+5\right)-\dfrac{13}{2}\)
\(=\dfrac{1}{2}\left(5-sin2x\right)\left(sin2x+1\right)-\dfrac{13}{2}\ge-\dfrac{13}{2}\) do \(-1\le sin2x\le1\)
\(\Rightarrow\min\limits_{x\in R}f\left(x\right)=-\dfrac{13}{2}\Rightarrow m\ge\dfrac{13}{2}\)
\(y=\sqrt{\dfrac{\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1}{2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m}}\)
Hàm xác định trên R khi:
TH1: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\ge0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}-m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m< \min\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=\dfrac{327}{32}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ge1+\sqrt{2}\\m< \dfrac{327}{160}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Th2: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\le0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m< 0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m>\max\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le-1-\sqrt{2}\\m>\dfrac{14}{5}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Anh ơi! Anh giúp em câu này ạ anh! Anh cho em xin phương pháp xác định điểm M và N theo hình chiếu song song với ạ (tổng quát cho mọi bài ạ anh.), em cũng chưa rõ phương pháp làm, nhìn hình mò một số đường để ra.
https://hoc24.vn/cau-hoi/cho-hinh-hop-abcdabcd-xac-dinh-diem-m-thuoc-ac-n-thuoc-bd-sao-cho-mn-di-voi-i-la-trung-diem-cua-aa-tinh-mamc.8751928472360
Hàm số xác định khi: \(\sin x - 1\; \ne 0\; \Leftrightarrow \sin x \ne 1\; \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi ,\;\;k \in \mathbb{Z}\)
Vậy ta chọn đáp án B
Để hàm số xác định \(\forall x\in R\Leftrightarrow sin^4x+cos^4x-2msinx.cosx\ge0\) \(\forall x\)
Ta có:
\(sin^4x+cos^4x-2msinx.cosx=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2-m.sin2x\)
\(=1-2\left(\frac{1}{2}sin2x\right)^2-msin2x=-\frac{1}{2}sin^22x-msin2x+1\)
Xét \(f\left(t\right)=-\frac{1}{2}t^2-mt+1\) với \(t\in\left[-1;1\right]\)
\(f\left(-1\right)=\frac{1}{2}+m\) ; \(f\left(1\right)=\frac{1}{2}-m\)
Để \(f\left(t\right)\ge0\) \(\forall t\in\left[-1;1\right]\Rightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\f\left(1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge-\frac{1}{2}\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)
bạn ơi mình hỏi sao lại chỉ xét f(1) vs f(-1) vậy