K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Giả sử (a1-b1)(a2-b2)....(a7-b7) la số lẻ

=> a1-b1;a2-b2;.....;a7-b7 là số lẻ

=> (a1-b1)+(a2-b2)+....+(a7-b7) là số lẻ

=> (a1+a2+...+a7)-(b1+b2+...+b3) là số lẻ

Mà 

 (a1+a2+...+a7)-(b1+b2+...+b3) =0 vô lí

=> tich do la so chan

 

20 tháng 8 2023

a) \(\widehat{B_1}=\widehat{B_3}=55^o\)

Hai góc đối đỉnh

Mà: \(\widehat{B_3}+\widehat{B_4}=180^o\) (kề bù)

\(\Rightarrow\widehat{B_4}=180^o-55^o=125^o\)

Mà: \(\widehat{B_2}=\widehat{B_4}=125^o\) (đối đỉnh)

b) Ta có: a//b

\(\Rightarrow\widehat{B_3}=\widehat{A_3}=55^o\)

Hai góc đồng vị

Mà: \(\widehat{B_2}=\widehat{A_4}=125^o\)

Hai góc so le trong

Mà: \(\widehat{B_1}=\widehat{A_1}=55^o\)

Đồng vị

Mà: \(\widehat{B_2}=\widehat{A_2}=125^o\)

Hai góc đồng vị

31 tháng 3 2023

Xét tổng

  Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0

Suy ra có ít nhất một trong 7 số  là số chẵn

  là số chẵn

27 tháng 12 2015

giả sử P lẻ thì a1-b2;a2-b2;a2003-b2003 lẻ.khi đó, (a1-b1)+(a2-b2)+...+(a2003-b2003) lẻ(vì có 2003 cặp số lẻ) (1)

mà (a1-b1)+(a2-b2)+...+(a2003-b2003)=(a1+a2+...+a2003)-(b1+b2+...+b2003). vì b1;b2;b3;...;b2003 là cách sắp xếp theo thứ tự khác của a1;a2;a3;...;a2003 nên (a1+a2+...+a2003)-(b1+b2+...+b2003)=0(2)

do (1) và(2) mâu thuẫn nên P ko thể là số lẻ, vậy P là số chẵn(đpcm)

tick 

27 tháng 12 2015

xin loi ban minh cung muon giai giup ban lam nhung minh moi hoc lop 5 thoi

27 tháng 12 2015

mình giống bạn sakura - sorry  nha

Số tam giác có được là:

\(C^2_3\cdot C^1_4+C^1_3\cdot C^2_4=30\)

8 tháng 4 2023

1 tam giác có 3 đỉnh ko thẳng hàng.

Theo NL Đi-rích-lê, có 3 điểm, 2 đường thẳng => Có 1 đường thẳng chứa 2 điểm, đường thẳng kia chứa điểm còn lại

Ta chia trường hợp:

*TH1: 2 điểm trên đường thẳng a, 1 điểm trên đường thẳng b

+) Điểm 1 trên a có 3 cách chọn

Điểm 2 trên a có 2 cách chọn

+) Điểm 1 trên b có 1 cách chọn

=> Tạo được 3.2.1 = 6 (tam giác)
*TH2: 1 điểm trên a, 2 điểm trên b

+) Điểm 1 trên a có 1 cách chọn

+) Điểm 1 trên b có 4 cách chọn

Điểm 2 trên b có 3 cách chọn

=> Tạo được 1.3.4 = 12 (tam giác)

Vậy tạo được tất cả 6+12=18 tam giác từ 7 điểm trên.