K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

=2(x​2+5x-1/2)= 2(x​2​+5x+25/4-29/4) =2[(x-5/2)2​-29/4]=2(x-5/2)2-29/2

​vì 2(x-5/2) luôn lớn hơn hoặc bằng 0 nêm biểu thức nhỏ nhất là băngd -29/2 khi x=5/2

18 tháng 7 2019

A = x2 - 6x + 11 

Nhập phương trình vào máy tính lặp 3 lần  dấu =

GTNN của A = 3

B = 2x2 + 10x - 1

Nhập phương trình vào máy tính lặp 3 lần dấu =

GTNN của B = \(-\frac{5}{2}\)

C = 5x - x2 

=> C = -x2 + 5x

Nhập phương trình vào máy tính lặp 3 lần dấu =

GTLN của C = \(\frac{5}{2}\)

18 tháng 7 2019

Trả lời

MK trả lời câu hỏi trc của bạn rùi nha 

https://olm.vn/hoi-dap/detail/225394580109.html

hok tốt

3 tháng 3 2019

  2 x 2 + 10 - 1 = 2 x 2 + 5 x - 1 / 2 B = 2 x 2 + 2 . 5 / 2   x   + 5 / 2 2 - 5 / 2 2 - 1 / 2 = 2 x + 5 / 2 2 - 25 / 4 - 2 / 4 = 2 x + 5 / 2 2 - 27 / 2 = 2 x + 5 / 2 2 - 27 / 2 V ì   x + 5 / 2 2   ≥   0   n ê n   2 x + 5 / 2 2   ≥   0   ⇒ 2   x + 5 / 2 2 - 27 / 2 ≥ - 27 / 2

Suy ra: B ≥ - 27/2 .

B= -27/2 khi và chỉ khi x + 5/2 = 0 suy ra x = -5/2

Vậy B = -27/2 là giá trị nhỏ nhất tại x = - 5/2

15 tháng 10 2015

\(A=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2\)

Vậy GTNN của A là 2

28 tháng 5 2015

B=2x2+10x-1

=2(x2+5x-\(\frac{1}{2}\))

=2(x2+2x.\(\frac{5}{2}\)\(+\frac{25}{4}\)\(-\frac{27}{4}\))

=2[(x2+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]

=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\ge\frac{-27}{2}\)(vì (x+5/2)2\(\ge0\))

Dấu = xảy ra khi :

x+\(\frac{5}{2}\)=0

<=>x=\(\frac{-5}{2}\)

Vậy GTNN của B là \(\frac{-27}{2}\)khi x= \(\frac{-5}{2}\)

 

25 tháng 7 2019

Tính GTNN của Biểu thức 

2x2+40x-1

\(\text{A=3x^2+4x-2}\)

\(=3\left(x+\frac{2}{3}\right)^2-\frac{10}{3}\ge-\frac{10}{3}\)

Dấu ''='' xảy ra khi \(x+\frac{2}{3}=0\Rightarrow x=-\frac{2}{3}\)

2 tháng 7 2019

Câu B mình type lỗi,sửa nha

B=4x/x2-x+4

17 tháng 7 2023

\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)

Do \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+16\ge16\)

\(\Rightarrow Min\left(A\right)=16\)

\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)

Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)

\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)

Do \(-\left(x-5\right)^2\le0\)

\(\Rightarrow-\left(x-5\right)^2+95\le95\)

\(\Rightarrow Max\left(C\right)=95\)

\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)

Do \(-\left(2x-3\right)^2\le0\)

\(\Rightarrow-\left(2x-3\right)^2+10\le10\)

\(\Rightarrow Max\left(D\right)=10\)

11 tháng 8 2016

\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)

Dấu = xảy ra \(\Leftrightarrow x=3\)

11 tháng 8 2016

\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)

22 tháng 12 2021

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

22 tháng 12 2021

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)