K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2015

B=2x2+10x-1

=2(x2+5x-\(\frac{1}{2}\))

=2(x2+2x.\(\frac{5}{2}\)\(+\frac{25}{4}\)\(-\frac{27}{4}\))

=2[(x2+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]

=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\ge\frac{-27}{2}\)(vì (x+5/2)2\(\ge0\))

Dấu = xảy ra khi :

x+\(\frac{5}{2}\)=0

<=>x=\(\frac{-5}{2}\)

Vậy GTNN của B là \(\frac{-27}{2}\)khi x= \(\frac{-5}{2}\)

 

25 tháng 7 2019

Tính GTNN của Biểu thức 

2x2+40x-1

18 tháng 7 2019

A = x2 - 6x + 11 

Nhập phương trình vào máy tính lặp 3 lần  dấu =

GTNN của A = 3

B = 2x2 + 10x - 1

Nhập phương trình vào máy tính lặp 3 lần dấu =

GTNN của B = \(-\frac{5}{2}\)

C = 5x - x2 

=> C = -x2 + 5x

Nhập phương trình vào máy tính lặp 3 lần dấu =

GTLN của C = \(\frac{5}{2}\)

18 tháng 7 2019

Trả lời

MK trả lời câu hỏi trc của bạn rùi nha 

https://olm.vn/hoi-dap/detail/225394580109.html

hok tốt

20 tháng 10 2016

A =  2x^2 +10x - 1

2A = 4x^2 + 20x -1

2A = (2x+5)2 - 26

A = (2x+5)2/2 - 13

A có GTNN thì (2x+5)2/2 = 0

2x+ 5 =0

x = -5/2

19 tháng 8 2017

Sai hết rồi 

3 tháng 3 2019

  2 x 2 + 10 - 1 = 2 x 2 + 5 x - 1 / 2 B = 2 x 2 + 2 . 5 / 2   x   + 5 / 2 2 - 5 / 2 2 - 1 / 2 = 2 x + 5 / 2 2 - 25 / 4 - 2 / 4 = 2 x + 5 / 2 2 - 27 / 2 = 2 x + 5 / 2 2 - 27 / 2 V ì   x + 5 / 2 2   ≥   0   n ê n   2 x + 5 / 2 2   ≥   0   ⇒ 2   x + 5 / 2 2 - 27 / 2 ≥ - 27 / 2

Suy ra: B ≥ - 27/2 .

B= -27/2 khi và chỉ khi x + 5/2 = 0 suy ra x = -5/2

Vậy B = -27/2 là giá trị nhỏ nhất tại x = - 5/2

17 tháng 7 2023

\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)

Do \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+16\ge16\)

\(\Rightarrow Min\left(A\right)=16\)

\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)

Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)

\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)

Do \(-\left(x-5\right)^2\le0\)

\(\Rightarrow-\left(x-5\right)^2+95\le95\)

\(\Rightarrow Max\left(C\right)=95\)

\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)

Do \(-\left(2x-3\right)^2\le0\)

\(\Rightarrow-\left(2x-3\right)^2+10\le10\)

\(\Rightarrow Max\left(D\right)=10\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
$B=5x^2+2x-3=5(x^2+\frac{2}{5}x+\frac{1}{5^2})-\frac{16}{5}$

$=5(x+\frac{1}{5})^2-\frac{16}{5}$

$\geq 5.0-\frac{16}{5}=\frac{-16}{5}$
Vậy GTNN của $B$ là $\frac{-16}{5}$. Giá trị này đạt tại $x+\frac{1}{5}=0\Leftrightarrow x=-\frac{1}{5}$

---------------------------------

$C=-9x^2+5x+1=1-(9x^2-5x)$

$=\frac{61}{36}-[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]$

$=\frac{61}{36}-(3x-\frac{5}{6})^2$

$\leq \frac{61}{36}$

Vậy gtln của $C$ là $\frac{61}{36}$. Giá trị này đạt tại $3x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{18}$

-----------------------

$D=16x^2-8x+12=(4x)^2-2.4x.1+1+11$

$=(4x-1)^2+11\geq 0+11=11$

Vậy gtnn của $D$ là $11$. Giá trị này đạt tại $4x-1=0\Leftrightarrow x=\frac{1}{4}$

28 tháng 12 2016

C = ( x2 - 4xy + 4y2 ) + 10.(x -2y) + ( y2 -2y + 1) + 27

   = ( x-2y)2 + 2.5.(x-2y) + 25 + (y-1)2 + 2

   = ( x-2y + 5 )2 + (y-1)2 + 2 \(\ge2\)vì \(\left(x-2y+5\right)^2\ge0\forall x,y\) và \(\left(y-1\right)^2\ge0\forall y\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min C = 2 \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

30 tháng 7 2018

A =  2 x 2 - 8 x - 10

= 2 x 2 - 4 x + 4 - 18 = 2 x - 2 2 - 18

Do 2 x - 2 2  ≥ 0 với mọi x ⇒ 2 x - 2 2  – 18 ≥ −18

A = -18 khi và chỉ khi x - 2 = 0 hay x = 2

Do đó giá trị nhỏ nhất của biểu thức A bằng -18 tại x = 2