Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,2 kiểu gì ẹ
3,
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\)
=> \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Làm tương tự rồi nhân lại ta được \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
=> \(xyz\le\frac{1}{8}\).Dấu bằng khi x=y=z=1/2
4.
Ta đi CM: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\) <=> \(a^4+a\left(b+c\right)^3\le\left(a^2+b^2+c^2\right)^2\)
<=> \(a\left(b+c\right)^3\le2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\)
Áp dụng BDT COSI thì
\(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}\ge a\left(b+c\right)^3\)
Do đó có dpcm
Làm tương tự rồi cộng lại ta đc bdt ban đầu
Dấu bằng xảy ra khi a=b=c
\(S=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}\)
\(=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
=> MIN S = 2
Dấu "=" xảy ra <=> x - 2 = 0
<=> x = 2
Vậy Min S = 2 khi x = 2
\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)
\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)
\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)
Áp dụng Côsi :
\(y=3x+\frac{1}{2x}=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+5.\frac{1}{2}=\frac{7}{2}\)
Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{1}{2x}\text{ và }x=1\Leftrightarrow x=1\)
Vậy GTNN của y (x>=1) là 7/2