Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 3-Q=\(\dfrac{2\left(a+b\right)^2}{a^2+ab+b^2}\)>=0
\(\Rightarrow\) Max Q=3
ta có : Q-\(\dfrac{1}{3}\)= \(\dfrac{2\left(a-b\right)^2}{3\left(a^2+ab+b^2\right)}\)>=0
\(\Rightarrow\)Min Q=\(\dfrac{-1}{3}\)
Hãy dùng phương pháp tập thể dục như của Hung nguyen nhé
Theo bài ra , ta có :
\(Q=\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{a^2+ab+b^2-2ab}{a^2+ab+b^2}=1-\dfrac{2ab}{a^2+ab+b^2}\)
Vì a,b đồng thời không bằng không ta chia cả tử và mẩu cho 2ab , ta được
\(\dfrac{2a}{a^2+ab+b^2}=\dfrac{1}{\dfrac{a^2}{2ab}+1+\dfrac{b^2}{2ab}}=\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\)
Vì a,b khác 0 =) a/2b , b/2a khác 0
Áp dụng BĐT cô si cho 2 số a/2b , b/2a khác 0
\(\Rightarrow\dfrac{a}{2b}+\dfrac{b}{2a}\ge2\sqrt{\dfrac{a}{2b}.\dfrac{b}{2a}}\)
\(\Rightarrow\dfrac{a}{2b}+\dfrac{b}{2a}\ge2\sqrt{\dfrac{1}{2}}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{a}{2b}+1+\dfrac{b}{2a}\ge1+\dfrac{1}{4}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\le\dfrac{1}{\dfrac{5}{4}}=\dfrac{4}{5}\)
\(\Leftrightarrow1-\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\le\dfrac{1}{5}\)
\(\Rightarrow Max_Q=\dfrac{1}{5}\Leftrightarrow\dfrac{a}{2b}=\dfrac{b}{2a}\Leftrightarrow\dfrac{a}{2b}-\dfrac{b}{2a}=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)
mà a và b là hai số khác 0 =) a = b
Vậy GTLN của Q là 1/5 khi và chỉ khi a = b
ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)
Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)
Vậy \(2007\le ab+2009\le2011\)
maximize=3 khi b=-a
minimize =1/3 khi a=b
rảnh thì làm cho h fai ngủ r` (:|
Lời gải:
Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:
$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$
$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$
$=\frac{25}{2(a^2+b^2+2ab)+2ab}$
$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$
Vậy $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$
Ta có \(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2-3ab+3b^2}{3a^2+3ab+b^2}=\frac{a^2+ab+b^2+2a^2-4ab+2b^2}{3a^2+3ab+3b^2}\) \(=\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\)
. Xét \(a^2+ab+b^2\) \(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
. Suy ra \(\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\ge\frac{1}{3}\) => \(MinQ=\frac{1}{3}\) khi \(a=b\)
. \(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2+3ab+3b^2-2a^2-4ab-2b^2}{a^2+ab+b^2}\) \(=3-\frac{2\left(a+b\right)^2}{a^2+ab+b^2}\le3\)
. Suy ra \(MaxQ=3\) khi \(a=-b\)
. Kết luận ^^