K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7

Lời giải:

\(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}\\ \Rightarrow Q(a^2+ab+b^2)=a^2-ab+b^2\)

$\Leftrightarrow a^2(Q-1)+a(Qb+b)+(Qb^2-b^2)=0(*)$

Vì $Q$ tồn tại nên PT $(*)$ luôn có nghiệm.

Điều này xảy ra khi:

$\Delta=(Qb+b)^2-4(Q-1)(Qb^2-b^2)\geq 0$

$\Leftrightarrow b^2(Q+1)^2-4b^2(Q-1)^2\geq 0$

$\Leftrightarrow (Q+1)^2-4(Q-1)^2\geq 0$

$\Leftrightarrow (Q+1-2Q+2)(Q+1+2Q-2)\geq 0$

$\Leftrightarrow (3-Q)(3Q-1)\geq 0$

$\Leftrightarrow \frac{1}{3}\leq Q\leq 3$

$\Rightarrow Q_{\min}=\frac{1}{3}; Q_{\max}=3$

3 tháng 6 2019

ta có \(P=a^4+b^4+2-2-ab\)

     AD BĐT cô si ta có 

\(a^4+1\ge2a^2\) dấu = khi a=1

\(b^4+1\ge2b^2\) dấu = khi b =1 

Khi đó  \(P\ge2a^2+2b^2-2-ab\)

        \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

     \(P\ge4-3ab\)(  Thay \(a^2+b^2+ab=3\)vào )   (1)

 mặt khác \(a^2+b^2\ge2ab\) 

khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

=>   \(ab\le1\)  (2)

từ (1) và (2) 

ta có \(P\ge4-3ab\ge4-3=1\)

 vậy P đạt GTNN là 1 khi a=b=1

21 tháng 8 2019

Dạng này nhìn mệt vãi:(

Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)

Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:

Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:

\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v

Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!

20 tháng 8 2023

hay bạn ơi

 

19 tháng 2 2020

*) \(MinA\) :

Ta thấy: a,b,c đều là các số thực không âm.

Do đó : \(A\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=0,c=1\) và các hoán vị.

\(*)MaxA\) :

Giả sử \(a\ge b\ge c\) \(\Rightarrow3a\ge a+b+c=1\) 

\(\Rightarrow1-3a\le0\)

Ta có : \(A=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)

\(=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3abc-3abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(=ab+bc+ca-3abc\)

\(=a\left(b+c\right)+bc\left(1-3a\right)\) \(\le\frac{\left(a+b+c\right)^2}{4}+0\) ( do \(1-3a\le0\) )    \(=\frac{1}{4}\)

hay \(A\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2},c=0\) và các hoán vị.

\(\)

8 tháng 2 2017

đồng thời = 9 thì sao nhỉ?

8 tháng 2 2017

maximize=3 khi b=-a

minimize =1/3 khi a=b

rảnh thì làm cho h fai ngủ r` (:|