K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Làm ơn giải giúp mình với ạ !

11 tháng 5 2023

Ta có thể giải bài toán này bằng cách sử dụng phương pháp điều chỉnh biểu thức P để biểu thức này có thể được phân tích thành tổng của các biểu thức có dạng a(x-y)+b(y-z)+c(z-x), trong đó x,y,z là các số thực không âm. Khi đó, ta có:

P = ab + bc - ca = a(b-c) + b(c-a) + c(a-b) = a(-c+b) + b(c-a) + c(-b+a) = a(x-y) + b(y-z) + c(z-x), với x = -c+b, y = c-a và z = -b+a

Do đó, để tìm giá trị lớn nhất của P, ta cần tìm các giá trị lớn nhất của x, y, z. Ta có:

x = -c+b ≤ b, vì c ≥ 0 y = c-a ≤ c ≤ 2022, vì a+b+c = 2022 z = -b+a ≤ a, vì b ≥ 0

Vậy giá trị lớn nhất của P là:

P_max = ab + bc - ca ≤ b(2022-a) + 2022a = 2022b

Tương tự, để tìm giá trị nhỏ nhất của P, ta cần tìm các giá trị nhỏ nhất của x, y, z. Ta có:

x = -c+b ≥ -2022, vì b ≤ 2022 y = c-a ≥ 0, vì c ≤ 2022 và a ≥ 0 z = -b+a ≥ -2022, vì a ≤ 2022

Vậy giá trị nhỏ nhất của P là:

P_min = ab + bc - ca ≥ (-2022)a + 0b + (-2022)c = -2022(a+c)

Do đó, giá trị lớn nhất của P là 2022b và giá trị nhỏ nhất của P là -2022(a+c).

NV
21 tháng 8 2021

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)

1 tháng 9 2020

Ta có  \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow\sqrt[3]{abc}\le1\Leftrightarrow abc\le1\)(bđt AM-GM)

Khi đó \(P=2\left(ab+bc+ca\right)-abc\ge2\left(ab+bc+ca\right)-1\)

\(=2\left(\frac{abc}{c}+\frac{abc}{a}+\frac{abc}{b}\right)-1=2\left[abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]-1\)

\(=2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-1=2.\frac{\left(1+1+1\right)^2}{a+b+c}-1=\frac{2.9}{3}-1=5\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

Vậy GTNN của \(P=5\)đạt được khi \(a=b=c=1\)

p/s : nói chung hướng làm là vậy thôi :v chứ minh làm sai chỗ nào rồi ý