K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

ta có : 3-Q=\(\dfrac{2\left(a+b\right)^2}{a^2+ab+b^2}\)>=0

\(\Rightarrow\) Max Q=3

ta có : Q-\(\dfrac{1}{3}\)= \(\dfrac{2\left(a-b\right)^2}{3\left(a^2+ab+b^2\right)}\)>=0

\(\Rightarrow\)Min Q=\(\dfrac{-1}{3}\)

10 tháng 3 2017

Hãy dùng phương pháp tập thể dục như của Hung nguyen nhé

Theo bài ra , ta có :

\(Q=\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{a^2+ab+b^2-2ab}{a^2+ab+b^2}=1-\dfrac{2ab}{a^2+ab+b^2}\)

Vì a,b đồng thời không bằng không ta chia cả tử và mẩu cho 2ab , ta được

\(\dfrac{2a}{a^2+ab+b^2}=\dfrac{1}{\dfrac{a^2}{2ab}+1+\dfrac{b^2}{2ab}}=\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\)

Vì a,b khác 0 =) a/2b , b/2a khác 0

Áp dụng BĐT cô si cho 2 số a/2b , b/2a khác 0

\(\Rightarrow\dfrac{a}{2b}+\dfrac{b}{2a}\ge2\sqrt{\dfrac{a}{2b}.\dfrac{b}{2a}}\)

\(\Rightarrow\dfrac{a}{2b}+\dfrac{b}{2a}\ge2\sqrt{\dfrac{1}{2}}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{a}{2b}+1+\dfrac{b}{2a}\ge1+\dfrac{1}{4}=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\le\dfrac{1}{\dfrac{5}{4}}=\dfrac{4}{5}\)

\(\Leftrightarrow1-\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\le\dfrac{1}{5}\)

\(\Rightarrow Max_Q=\dfrac{1}{5}\Leftrightarrow\dfrac{a}{2b}=\dfrac{b}{2a}\Leftrightarrow\dfrac{a}{2b}-\dfrac{b}{2a}=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

mà a và b là hai số khác 0 =) a = b

Vậy GTLN của Q là 1/5 khi và chỉ khi a = b

20 tháng 4 2016

Ta có \(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2-3ab+3b^2}{3a^2+3ab+b^2}=\frac{a^2+ab+b^2+2a^2-4ab+2b^2}{3a^2+3ab+3b^2}\) \(=\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\)

. Xét \(a^2+ab+b^2\) \(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\) 

. Suy ra \(\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\ge\frac{1}{3}\) => \(MinQ=\frac{1}{3}\) khi \(a=b\)

\(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2+3ab+3b^2-2a^2-4ab-2b^2}{a^2+ab+b^2}\) \(=3-\frac{2\left(a+b\right)^2}{a^2+ab+b^2}\le3\)

. Suy ra \(MaxQ=3\) khi \(a=-b\)

. Kết luận ^^

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

NM
9 tháng 8 2021

ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)

Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)

Vậy \(2007\le ab+2009\le2011\)

AH
Akai Haruma
Giáo viên
30 tháng 7

Lời giải:

\(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}\\ \Rightarrow Q(a^2+ab+b^2)=a^2-ab+b^2\)

$\Leftrightarrow a^2(Q-1)+a(Qb+b)+(Qb^2-b^2)=0(*)$

Vì $Q$ tồn tại nên PT $(*)$ luôn có nghiệm.

Điều này xảy ra khi:

$\Delta=(Qb+b)^2-4(Q-1)(Qb^2-b^2)\geq 0$

$\Leftrightarrow b^2(Q+1)^2-4b^2(Q-1)^2\geq 0$

$\Leftrightarrow (Q+1)^2-4(Q-1)^2\geq 0$

$\Leftrightarrow (Q+1-2Q+2)(Q+1+2Q-2)\geq 0$

$\Leftrightarrow (3-Q)(3Q-1)\geq 0$

$\Leftrightarrow \frac{1}{3}\leq Q\leq 3$

$\Rightarrow Q_{\min}=\frac{1}{3}; Q_{\max}=3$

8 tháng 2 2017

đồng thời = 9 thì sao nhỉ?

8 tháng 2 2017

maximize=3 khi b=-a

minimize =1/3 khi a=b

rảnh thì làm cho h fai ngủ r` (:|