Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)A=-x^2+x+1`
`=-(x^2-x)+1`
`=-(x^2-2.x. 1/2+1/4-1/4)+1`
`=-(x-1/2)^2+5/4<=5/4`
Dấu "=" xảy ra khi `x-1/2=0<=>x=1/2`
`b)B=x^2+3x+4`
`=x^2+2.x. 3/2+9/4+7/4`
`=(x-3/2)^2+7/4>=7/4`
Dấu "=" xảy ra khi `x-3/2=0<=>x=3/2`
`c)=x^2-11x+30`
`=x^2-2.x. 11/2+121/4-1/4`
`=(x-11/2)^2-1/4>=-1/4`
Dấu "=" xảy ra khi `x+1/4=0<=>x=-1/4`
\(A=x-x^2+\frac{1}{2}\)
\(\Leftrightarrow A=-\left(x^2-x-\frac{1}{2}\right)\)
\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{3}{4}\right)\)
\(\Leftrightarrow A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\)nên \(A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]\le\frac{3}{4}\)
Vậy \(A_{min}=\frac{3}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))
\(A=4-x^2+3\)
\(=-x^2+7\le7\)
Khi x=0
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(t=x^2+5x+4\) thì
\(=t\left(t+2\right)=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
(x-1)(x-2)(x-3)(x-4)+15
=(x2-5x+4)(x2-5x+6)+15
Đặt t=x2-5x+4 ta có:
t(t+2)+15=t2+2t+15
=t2+2t+1+14=(t+1)2+14\(\ge\)14
Dấu = khi t=-1 => x2-5x+4=-1 =>x=\(\frac{5\pm\sqrt{5}}{2}\)
Vậy....
Đặt: \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)
=> \(A=x^2-9+2\left(4x^2+4x+1\right)\)
=> \(A=x^2-9+8x^2+8x+2\)
=> \(A=9x^2+8x-7\)
=> \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)
Có: \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)
=> \(A\ge-\frac{79}{9}\)
DẤU "=" XẢY RA <=> \(\left(3x+\frac{4}{3}\right)^2=0\)
<=> \(x=-\frac{4}{9}\)
Vậy A min = \(-\frac{79}{9}\) <=> \(x=-\frac{4}{9}\)
( x - 3 )( x + 3 ) + 2( 2x + 1 )2
= x2 - 9 + 2( 4x2 + 4x + 1 )
= x2 - 9 + 8x2 + 8x + 2
= 9x2 + 8x - 7
= 9x2 + 8x + 16/9 - 79/9
= ( 3x + 4/3 )2 - 79/9
\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)
Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9
=> GTNN của biểu thức = -79/9 <=> x = -4/9
A= 1/(x^2+2x+3)
Ta có x^2+2x+3=(x+1)^2 +2
Vì (x+1) ^2 \(\ge\)0 với mọi x
=> (x+1)^2 +2\(\ge\)2 với mọi x
=> vậy GTLN của 1/(x^2+2x+3) =1/2
Dấu bằng xảy ra khi x+1=0 => x=-1
Tìm GTNN hoặc GTLN của biểu thức sau:
C= |x-3| (2-|x-3|)
D= (x-1)(x+5)(x^2 +4x+5)
G= (x-3)^2 + (x-2)^2
a,\(A=\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(x^2+6x+5\right)\left(x^2+6x+8\right)\)
đặt \(x^2+6x+5=t=>t\left(t+3\right)=t^2+3t=t^2+2.\dfrac{3}{2}t+\dfrac{9}{4}-\dfrac{9}{4}\)
\(=\left(t+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}< =>t=\dfrac{-3}{2}\)
\(=>A\)\(=-\dfrac{3}{2}\left(-\dfrac{3}{2}+3\right)=-2,25\)
Vậy Min A\(=-2,25\)
b,\(B=-x^2-4x-9y^2-6y-6\)
\(=-\left(x^2+4x+4\right)-\left(3y\right)^2-2.3y-1-1\)
\(=-\left(x+2\right)^2-\left(3y+1\right)^2-1\le-1\)
dấu"=' xảy ra\(< =>x=-2,y=-\dfrac{1}{3}\)
a.
$(x+1)(x+2)(x+4)(x+5)=(x+1)(x+5)(x+2)(x+4)=(x^2+6x+5)(x^2+6x+8)$
$=a(a+3)$ với $a=x^2+6x+5$
$=a^2+3a=(a^2+3a+\frac{9}{4})-\frac{9}{4}$
$=(a+\frac{3}{2})^2-\frac{9}{4}$
$=(x^2+6x+\frac{13}{2})^2-\frac{9}{4}\geq \frac{-9}{4}$
Vậy gtnn của biểu thức là $\frac{-9}{4}$. Giá trị này đạt tại $x^2+6x+\frac{13}{2}=0$
$\Leftrightarrow x=\frac{-6\pm \sqrt{10}}{2}$
\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)
Vì: \(\left(x-2\right)^2\ge0\)
=> \(\left(x-2\right)^2+3\ge3\)
Vậy GTNN của A là 3 khi x=2
\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)
Vì: \(2\left(x+3\right)^2\ge0\)
=> \(2\left(x+3\right)^2-19\ge-19\)
Vậy GTNN của B là -19 khi x=-3
\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)
=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)
Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.
fuk hihi
ta có 2(x^2+x+1)/x^2+1
=2x^2+2x+2/x^2+1
=1+(x+1)^2/x^2+1>=1 với mọi x
dấu bằng xảy ra khi x=-1
bạn tự kết luận nha