K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2016

|x+2| > 0

=>-3-|x+2| < -3-0=-3

=>GTNN là -3

dấu "=" xảy ra<=>x+2=0<=>x=-2

24 tháng 1 2016

a.(x-2)^2 > 0

=>15-(x-2)^2 < 15-0=15

=>GTLN là 15

dấu "=" xảy ra<=>x=2

câu sau tương tự,GTNN là -7

3 tháng 2 2018

VÌ x +7 >,= 0 với mọi x

=> ( x+7) + 2018 > , = 2018 VỚI MỌI X

hay A >,= 2018 VỚI MỌI X

MAX = 2018 VỚI MỌI X

<=> x+ 7 = 0 

=> x= -7

​vậy max = 2018 <=> x= -7

11 tháng 7 2019

A. A= |x + 10| + 2005

Vì |x + 10| ≥ 0

=>|x + 10| + 2005 ≥ 2005

=> GTNN của |x + 10| + 2005 là 2005 khi |x + 10|=0

Vì x + 10 = 0 nên x = -10

Vậy GTNN =2005 khi x= -10

B. A= 2 - |x + 7|

Vì |x + 7| ≥ 0

Mà 2-|x + 7| ≤ 2

=> GTLN của 2 - |x + 7| là 2 khi |x + 7| =0

Vì x + 7 =0, nên x = -7

Vậy GTLN= 2 khi x = -7

11 tháng 7 2019

( Mik ít làm mấy dạng này nên có thể sai hoặc trình bày chưa hợp lí, mong bạn thông cảm :))
Giải:

A) Để A nhỏ nhất thì |x+10| nhỏ nhất.

Do \(\left|x+10\right|\ge0\)

=> Min |x+10|=0

\(\Rightarrow Min\) \(\left|x+10\right|+2005\) = 0+2005=2005

\(\Leftrightarrow MinA=2005\)

Vậy GTNN của biểu thức A là 2005.

B) Để A lớn nhất thì |x+7| nhỏ nhất

Dễ thấy |x+7| \(\ge\) 0 ( Do |x+7| là GTTĐ của 1 số)

\(\Rightarrow Min\left|x+7\right|=0\)

\(\Rightarrow MinA=2-0=2\)

Vậy GTLN của biểu thức A là 2.

26 tháng 7 2015

a) Ta có /x-1/ > o vs mọi x

=> 3+/x-1/ >3 vs mọi x

=> P >3

=> Min B = 3 <=> x-1=0 <=> x=1

b) Ta có /x+1/ > 0 vs mọi x

=> 5-/x+1/ >5 vs mọi x

=> Q >5

=> Min Q = 5 <=> x+1 =0 <=> x=-1

11 tháng 5 2017

a, A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b, Gọi UCLN(a2 + a - 1,a2 + a + 1) là d

Ta có: a2 + a - 1 \(⋮\)d

          a2 + a + 1 \(⋮\)d

=> (a2 + a - 1) - (a2 + a + 1) \(⋮\)d

=> 2 \(⋮\)d => d = {1;-1;2;-2}

Mà a2 + a - 1 = a(a + 1) - 1 lẻ => d lẻ => d không thể bằng 2;-2 => d = {1;-1}

Vậy A tối giản

A = 2 + 3\(\sqrt[]{x^2+1}\) 

Ta có: x2 \(\ge\) 0, \(\forall\) x => x\(\ge\) 1, \(\forall\) x

=> \(\sqrt[]{x^2+1}\) \(\ge\) \(\sqrt[]{1}\) 

=> 3\(\sqrt[]{x^2+1}\) \(\ge\) 3

=> 2 + 3\(\sqrt[]{x^2+1}\) \(\ge\) 5

Vậy A đạt GTNN khi bằng 5

Dấu "=" xảy ra khi x = 0