Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
1.
\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{2^2}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)
\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)
2.
\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)
\(f\left(x\right)_{min}=4\) khi \(x=\dfrac{1}{2}\)
f(x)=4x+x−1+11−x=22x+11−x−1≥(2+1)2x+1−x−1=8f(x)=4x+x−1+11−x=22x+11−x−1≥(2+1)2x+1−x−1=8
f(x)min=8f(x)min=8 khi x=23x=23
2.
f(x)=1x+11−x≥4x+1−x=4f(x)=1x+11−x≥4x+1−x=4
f(x)min=4f(x)min=4 khi x=12
\(x+2y=6\)
\(\Leftrightarrow\dfrac{6}{2}=\dfrac{x}{2}+y\)
\(P+\dfrac{6}{2}=\dfrac{8}{x}+\dfrac{1}{y}+\dfrac{x}{2}+y\)
\(\Leftrightarrow P+\dfrac{6}{2}=\left(\dfrac{8}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{y}+y\right)\)
vì x;y là số thực dương ,áp dụng BĐT Côsi ta có :
\(\dfrac{8}{x}+\dfrac{x}{2}=2\sqrt{\dfrac{8}{x}+\dfrac{x}{2}}=2\sqrt{4}=2.2=4\)
\(\dfrac{1}{y}+y=2\sqrt{\dfrac{1}{y}+y}=2\sqrt{1}=2.1=2\)
nên \(P+\dfrac{6}{2}\ge6\)
\(\Leftrightarrow P\ge6-\dfrac{6}{2}\)
\(\Leftrightarrow P\ge3\)
vậy \(P_{min}=3\)
a) \(f(x)\geq 2\sqrt{x^2.\frac{16}{x^2}}=2\sqrt{16}=2.4=8\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=\frac{16}{x^2}\)
\(\Leftrightarrow x=2\)
Vậy GTNN của \(f(x)\) bằng 8 khi x=2
b) \(f(x)=\frac{1-x+x}{x}+\frac{2-2x+2x}{1-x}\)
\(f(x)=\frac{1-x}{x}+\frac{2x}{1-x}+3\)
\(f(x)\geq 2\sqrt{\frac{1-x}{x}.\frac{2x}{1-x}}+3=2\sqrt{2}+3\)
Dấu "=" xảy ra khi và chỉ khi \(\frac{1-x}{x}=\frac{2x}{1-x}\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN của \(f(x)\) bằng \(2\sqrt{2} +3\) khi \(x=\frac{1}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{7}{4}x+\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\)
Áp dụng bđt Cô-si :
\(\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\ge3\sqrt[3]{\dfrac{1}{8}x\cdot\dfrac{1}{8}x\cdot\dfrac{8}{x^2}}=\dfrac{3}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{7}{4}x+\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\ge7+\dfrac{3}{2}=\dfrac{17}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow x=4\)
\(f\left(x\right)=\dfrac{x}{8}+\dfrac{x}{8}+\dfrac{8}{x^2}+\dfrac{7}{4}x\ge3\sqrt[3]{\dfrac{8x^2}{64x^2}}+\dfrac{7}{4}.4=\dfrac{17}{2}\)
Dấu "=" xảy ra khi \(x=4\)
\(P=\dfrac{4}{x}+1+\dfrac{9}{1-x}=\dfrac{4}{x}+25x+25\left(1-x\right)+\dfrac{9}{1-x}-24\)
\(\Rightarrow P\ge2\sqrt{\dfrac{4}{x}.25x}+2\sqrt{25\left(1-x\right).\dfrac{9}{1-x}}-24\)
\(\Rightarrow P\ge20+30-24=26\)
\(\Rightarrow P_{min}=26\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{4}{x}=25x\\25\left(1-x\right)=\dfrac{9}{1-x}\end{matrix}\right.\) \(\Rightarrow x=\dfrac{2}{5}\)
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
\(Q=x^2+\dfrac{4}{x}+\dfrac{4}{x}\ge3\sqrt[3]{\dfrac{16x^2}{x^2}}=3\sqrt[3]{16}\)
Dấu "=" xảy ra khi \(x=\sqrt[3]{4}\)