K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

\(M=x^2+2y^2+2xy-2x-3y+1\)

=> \(M=x^2+2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-3y+1\)

=> \(M=\left(x+y-1\right)^2-y^2+2y-1+2y^2-3y+1\)

=> \(M=\left(x+y-1\right)^2+y^2-y\)

=> \(M=\left(x+y-1\right)^2+y^2-2y\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\)

Có \(\left(x+y-1\right)^2\ge0\)với mọi x, y

\(\left(y-\frac{1}{2}\right)^2\ge0\)với mọi y

=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)với mọi x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-\frac{1}{2}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)

KL: Mmin = \(\frac{-1}{4}\)<=> \(x=y=\frac{1}{2}\)

13 tháng 11 2016

cảm ơn Giang

9 tháng 11 2017

Phương trình tương đương: \(\left(x^2+2xy+y^2\right)+y^2+3y-4=0\)

\(\Leftrightarrow\left(x+y\right)^2=4-y^2-3y\)

do \(VT\ge0\) \(\Rightarrow VP\ge0\)\(\Rightarrow4-y^2-3y\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)

\(\Leftrightarrow4y^2+12y-16\le0\)\(\Leftrightarrow\left(2y+3\right)^2-25\le0\Leftrightarrow\left(2y+3\right)^2\le25\)

\(\Rightarrow-5\le2y+3\le5\Rightarrow-4\le y\le1\)

Đến đây thì thế vào pt là tìm được x

21 tháng 8 2019

x=2; y=0 là n0 của pt

21 tháng 8 2019

Có thể giải kĩ đc ko

11 tháng 3 2017

A=(5x-3y-2)+ (x+y+1)+ 4

Vậy giá trị nhỏ nhất của A là 4

1 tháng 6 2021

M=x+2y =>x=M-2y

(M-2y)2+2.(M-2y).y+3.y2=6

3.y2-2My+M2-6=0

Pt có nghiệm khi \(\Delta'\ge0\\ M^2-3.\left(M^2-6\right)\ge0\\ -2M^2+18\ge0\\ M^2\le9\\ \)

\(-3\le M\le3\)