Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 2 pt vô nghiệm. Khi đó \(p_1^2< 4q_1;p_2^2< 4q_2\Rightarrow p_1^2+p_2^2< 4\left(q_1+q_2\right)\le2p_1p_2\Leftrightarrow\left(p_1-p_2\right)^2< 0\). (vô lí)
Do đó tồn tại 1 pt có nghiệm
(x+1)2 .y = 4x
+x =- 1 không thỏa mãn
+ \(y=\frac{4x}{\left(x+1\right)^2}=\frac{4x-\left(x+1\right)^2}{\left(x+1\right)^2}+1=-\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\le1\)
=>y max = 1 => x =1
Ta có x2 + xy + y2 = x2 y2
<=> (x + y)2 = xy(xy + 1)
Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2
Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0
Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1)
Phương trình tương đương: \(\left(x^2+2xy+y^2\right)+y^2+3y-4=0\)
\(\Leftrightarrow\left(x+y\right)^2=4-y^2-3y\)
do \(VT\ge0\) \(\Rightarrow VP\ge0\)\(\Rightarrow4-y^2-3y\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow4y^2+12y-16\le0\)\(\Leftrightarrow\left(2y+3\right)^2-25\le0\Leftrightarrow\left(2y+3\right)^2\le25\)
\(\Rightarrow-5\le2y+3\le5\Rightarrow-4\le y\le1\)
Đến đây thì thế vào pt là tìm được x