Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em chỉ thử thôi, giáo viên nào đi qua check hộ em với ạ!
\(y'=3-\dfrac{4}{x^3}\)
\(y'=0\Leftrightarrow x=\sqrt[3]{\dfrac{4}{3}}\notin[2;+\infty)\)
\(\Rightarrow y_{min}=f\left(2\right)=3.6+\dfrac{2}{2^2}=\dfrac{13}{2}\)
b/ \(y'=2-\dfrac{2}{x^3}\)
\(y'=0\Leftrightarrow x=1\notin(0;\dfrac{2}{3}]\)
\(f\left(0,4\right)=7,05;f\left(0,5\right)=5\Rightarrow ham-nghich-bien-trong-nua-khoang-(0;\dfrac{2}{3}]\)
\(\Rightarrow y_{min}=f\left(\dfrac{2}{3}\right)=2.\dfrac{2}{3}+\dfrac{1}{\left(\dfrac{2}{3}\right)^2}=\dfrac{43}{12}\)
c/ \(y=x+\dfrac{1}{x-1}\Rightarrow y'=1-\dfrac{1}{\left(x-1\right)^2}\)
\(y'=0\Leftrightarrow1-\dfrac{1}{\left(x-1\right)^2}=0\Leftrightarrow\left[{}\begin{matrix}x=0\notin\left(1;+\infty\right)\\x=2\in\left(1;+\infty\right)\end{matrix}\right.\)
\(f\left(\dfrac{3}{2}\right)=\dfrac{3}{2}+\dfrac{1}{\dfrac{3}{2}-1}=\dfrac{7}{2};f\left(2\right)=3;f\left(3\right)=\dfrac{7}{2}\)
=> ham nghich bien tren \(\left(1;2\right)\) va dong bien tren \([2;+\infty)\)
\(\Rightarrow y_{min}=f\left(2\right)=3\)
d/ \(y=\dfrac{1}{x}+\dfrac{2}{1-x}\Rightarrow y'=-\dfrac{1}{x^2}+\dfrac{2}{\left(1-x\right)^2}\)
\(y'=0\Leftrightarrow-\dfrac{1}{x^2}+\dfrac{2}{\left(1-x\right)^2}=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\in\left(0;1\right)\\x=-1-\sqrt{2}\notin\left(0;1\right)\end{matrix}\right.\)
\(f\left(0,2\right)=\dfrac{15}{2};f\left(\sqrt{2}-1\right)=3+2\sqrt{2};f\left(0,5\right)=6\)
=> f(x) nghich bien tren \(\left(0;\sqrt{2}-1\right)\)
dong bien tren \([\sqrt{2}-1;1)\)
\(\Rightarrow y_{min}=f\left(\sqrt{2}-1\right)=3+2\sqrt{2}\)
e/ \(y=\dfrac{x^2+2x+2}{x+1}\Rightarrow y'=\dfrac{\left(x^2+2x+2\right)'\left(x+1\right)-\left(x+1\right)'\left(x^2+2x+2\right)}{\left(x+1\right)^2}\)
\(y'=\dfrac{\left(x+1\right).\left(2x+2\right)-x^2-2x-2}{\left(x+1\right)^2}=\dfrac{2x^2+4x+2-x^2-2x-2}{\left(x+1\right)^2}=\dfrac{x^2+2x}{x^2+2x+1}\)
\(y'=0\Leftrightarrow x^2+2x=0\Leftrightarrow x=0\in\left(-1;+\infty\right)\)
\(f\left(-0,5\right)=\dfrac{5}{2};f\left(0\right)=2;f\left(1\right)=\dfrac{5}{2}\)
=> f(x) nghich bien tren \(\left(-1;0\right)\)
dong bien tren \([0;+\infty)\)
\(\Rightarrow y_{min}=f\left(0\right)=2\)
- Hàm số y = cosx trên đoạn [(-π)/2; 3π/2]:
Các khoảng tăng: [(-π)/2,0], [π, 3π/2].
Các khoảng giảm: [0, π ],.
- Hàm số y = |x| trên khoảng (-∞; +∞)
Khoảng tăng: [0, +∞)
Khoảng giảm (-∞, 0].
Chọn D.
Cách 1:
Hàm số y = 2 cos 3 x - 3 cos 2 x - m cos x nghịch biến trên khoảng 0 ; π 2
Xét
Đặt t = cosx
Ta có: là Parabol có đỉnh và hệ số a < 0 nên có giá trị lớn nhất là 3 2 tại t = 1 2
Để (1) xảy ra
Cách 2:
Đặt t = cosx
Ta có:
Hàm số y = 2 cos 3 x - 3 cos 2 x - m cos x nghịch biến trên khoảng 0 ; π 2 thì đồng biến trên khoảng (0;1)
Dựa vào bảng biến thiên suy ra
Câu này giống câu bên dưới bạn hỏi, bạn tham khảo cách mình làm ạ !