K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

:< rồi để căn nó mệt người mik đặt hem:P

Ta có: \(\hept{\begin{cases}\sqrt{a}=a\\\sqrt{b}=b\end{cases}}\)

\(P=a^2-2ab+3b^2-2a+1\)

\(\Leftrightarrow3P=3a^2-6ab+9b^2-6a+3\)

\(\Leftrightarrow3P=\left(x-3b\right)^2+2\left(a-\frac{3}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)

\(\Rightarrow P\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\) hay \(\hept{\begin{cases}a=\frac{9}{4}\\b=\frac{1}{4}\end{cases}}\)

11 tháng 2 2020

Đặt \(\sqrt{a}=u;\sqrt{b}=v\left(u,v\ge0\right)\)

Lúc đó \(P=u^2-2uv+3v^2-2u+1\)

\(\Rightarrow3P=3u^2-6uv+9v^2-6u+3\)

\(=\left(u^2-6uv+9v^2\right)+2\left(u^2-6u+\frac{9}{4}\right)-\frac{3}{2}\)

\(=\left(u-3v\right)^2+2\left(u-\frac{3}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)

\(\Rightarrow P\ge\frac{-1}{2}\)

(Dấu "=" khi \(\hept{\begin{cases}u=\frac{3}{2}\\v=\frac{1}{2}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{a}=\frac{3}{2}\\\sqrt{b}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{9}{4}\\b=\frac{1}{4}\end{cases}}\))

10 tháng 7 2021

Ta có 4M = 4a2 + 4ab + 4b2 - 12a - 12b + 8052

= (4a2 + 4ab + b2) - 6(2a + b) + 9 + 3b2 - 6b + 3 + 8040

= (2a + b)2 - 6(a + b) + 9 + 3(b2 - 2b + 1) + 8040 

= (2a + b - 3)2 + 3(b - 1)2 + 8040 \(\ge\)8040

=> Min 4M = 8040

=> Min M = 2010

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2a+b-3=0\\b-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\Leftrightarrow a=b=1\)

Vạy Min M = 2010 <=> a = b = 1

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

13 tháng 3 2020

Ta có :  \(a+b=2\)

\(\Rightarrow\)\(a = 2 -b\)

\(A = 2a^2 +3b^2 +3ab\)

\(A = 2a^2 + 3b. (a+b)\)

\(A = 2. (2-b)^2+3b. (2-b+b)\)

\(A = 2. ( b^2 -4b+4)+6b\)

\(A = 2b^2 -8b+8+6b\)

\(A = 2b^2 -2b+8\)

\(A = 2. ( b ^2 -b+4)\)

\(A=2. (b^2 -2.b.{1\over2}+({1\over2})^2-({1\over2})^2+4)\)

\(A = 2. [ (b -{1\over2})^2-{15\over4}]\)

\(A =2. (b-{1\over2})^2 + {15\over2}\)\(\ge\)\({15\over2}\)

\(Min A ={15\over2}\)\(\Leftrightarrow\)\(a = {3\over2};b={1\over2}\)

Ta có : a+b=2→b=2−a

→P=2a2+3b2+3ab=2a2+3b(a+b)=2a2+3b.2=2a2+6b=2a2+6(2−a)=2a2−6a+12

→P=2(a2−3a)+12

→P=2(a2−2a.32+94)+152

→P=2(a−32)2+152≥152

→GTNNP=152

Dấu  = xảy ra khi a−32=0

NV
25 tháng 9 2020

\(A=\left(a^2+b^2+1-2ab-2a+2b\right)+\frac{1}{2}\left(4b^2-4b+1\right)+2008\)

\(A=\left(a-b-1\right)^2+\frac{1}{2}\left(2b-1\right)^2+2008\ge2008\)

\(A_{min}=2008\) khi \(\left\{{}\begin{matrix}a=\frac{3}{2}\\b=\frac{1}{2}\end{matrix}\right.\)

8 tháng 5 2018

Ta dễ dàng chứng minh:
\(0< a,b,c\le\frac{3}{2}\)
Áp dụng BDT cô si cho ba số dương ta có:
\(\left(\frac{3}{2}-a\right)+\left(\frac{3}{2}-b\right)+\left(\frac{3}{2}-c\right)\ge3\sqrt[3]{\frac{3}{2}-a)(\frac{3}{2}-b)(\frac{3}{2}-c)}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^3\ge\frac{3}{2}-a)(\frac{3}{2}-b)(\frac{3}{2}-c)\)

\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{9}{4}\left(a+b+c\right)+\frac{3}{2}\left(ab+bc+ac\right)-abc\)

\(\Leftrightarrow\frac{1}{8}\ge-\frac{27}{8}+\frac{3}{2}\left(ab+bc+ac\right)-abc\)

\(\Leftrightarrow4abc\ge-14+6\left(ab+bc+ac\right)\)

\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge13\)