K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

\(a)\) Ta có : 

\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=\left|1\right|=1\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)\left(2-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}\Leftrightarrow}1\le x\le2}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-1\le0\\2-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge2\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A\) là \(1\) khi \(1\le x\le2\)

Chúc bạn học tốt ~ 

13 tháng 6 2018

\(b)\) Ta có : 

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-8\right|\)

\(B=\left(\left|x-1\right|+\left|x-8\right|\right)+\left|x-2\right|\)

\(B=\left(\left|x-1\right|+\left|8-x\right|\right)+\left|x-2\right|\)

\(B\ge\left|x-1+8-x\right|+\left|x-2\right|=7+\left|x-2\right|\ge7\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)\left(8-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le8\\x=2\end{cases}}}\) ( thoả mãn ) 

Vậy GTNN của \(B\) là \(7\) khi \(x=2\)

Chúc bạn học tốt ~ 

3 tháng 4 2020

 A = x + | x |

có ; \(\left|x\right|\ge0\forall x\)

=> \(x+\left|x\right|\ge x\forall x\)

dấu ''='' xảy ra <=> x =0

vậy gtnn của A là x tại x=0

b) ta có : \(\left|x-3\right|\ge0\forall x\in Z\)

dấu ''='' xảy ra <=> x-3=0

=>  x=3

vậy gtnn  của bt B là 0 tại x=3

c) | x - 2 | + | x - 4 |

\(C=\left|x-2\right|+\left|x-4\right|\ge\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|\ge2\)

dấu ''='' xảy ra <=> \(\left(x-2\right)\left(4-x\right)\ge0\)

\(\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

vậy gtnn của bt C là 2 tại x ={2;4}

11 tháng 3 2016

Xin lỗi! Mình mới học lớp 5 thôi à!

10 tháng 10 2019

em xét dấu trị tuyệt đối với mũ 2 nhé

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{x^2-4x+7}\)

\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)

\(A=\frac{1}{\left(x-2\right)^2+3}\)

Lại có : 

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)

\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)

Chúc bạn học tốt ~ 

22 tháng 4 2018

\(b)\) Ta có : 

\(f\left(x\right)=x^2-4x+7\)

\(f\left(x\right)=\left(x^2-4x+4\right)+3\)

\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)

Vậy đa thức \(f\left(x\right)\) vô nghiệm 

Chúc bạn học tốt ~ 

19 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)

Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3x+2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

Chúc bạn học tốt ~ 

19 tháng 4 2018

\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau : 

\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)

Áp dụng vào ta có : 

\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A=8\) khi \(0\le x\le8\)

Chúc bạn học tốt ~ 

21 tháng 7 2016

a) A = 1,5 - | x + 2,1 |

   Ta có: | x + 2,1| \(\ge\)0 với mọi x

   \(\Rightarrow\)1,5 - | x + 2,1 | \(\le\)1,5 với mọi x

Dấu "=" xảy ra khi: x + 2,1 = 0

                               x         = -2,1

Biểu thức A đạt giá trị lớn nhất = 1,5 khi x = -2,1

b) B = -5,7 - | 2,7 - x |

 Ta có: | 2,7 - x | \(\ge\)0 với mọi x

      \(\Rightarrow\)-5,7 - | 2,7 - x | \(\le\)-5,7

Dấu "=" xảy ra khi: 2,7 - x = 0

                                    x = 2,7

Biểu thức B đạt giá trị lớn nhất = -5,7 khi x = 2,7

21 tháng 7 2016

Cám ơn bạn