K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

\(A=\frac{\left|x-2019\right|+2020-2}{\left|x-2019\right|+2020}=1-\frac{2}{\left|x-2019\right|+2020}\)

Vì \(\left|x-2019\right|\ge0\)

=> \(\left|x-2019\right|+2020\ge2020\)

=> \(\frac{2}{\left|x-2019\right|+2020}\le\frac{2}{2020}\)

=> \(-\frac{2}{\left|x-2019\right|+2020}\ge-\frac{2}{2020}\)

=> \(1-\frac{2}{\left|x-2019\right|+2020}\ge1-\frac{2}{2020}=\frac{2018}{2020}=\frac{1009}{1010}\)

=> \(A\ge\frac{1009}{1010}\)

Dấu "=" xảy ra <=> \(x-2019=0\Leftrightarrow x=2019\)

Vậy GTNN của A bằng 1009/1010 đạt tại x = 2019.

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

11 tháng 7 2019

Ta có: M = |x - 2018| + |x - 2019| + 2020

       M = |x - 2018| + |2019 - x| + 2020 \(\ge\)|x - 2018  + 2019 - x| + 2020 = |1| + 2020 = 2021

Dấu "=" xảy ra khi: x - 2018 + x - 2019 = 0

      <=> 2x - 4037 = 0

      <=> 2x = 4037

     <=> x = 2018,5

Vậy Min của M = 2021 tại x = 2018,5

11 tháng 7 2019

Sửa lại một đoạn:

Dấu "=" xảy ra khi : (x - 2018)(2019 - x) = 0

      <=> 2018 \(\le\)\(\le\)2019

9 tháng 11 2019

Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)

\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)

(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)

\(\Leftrightarrow2018\le x\le2020\))

Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)

Đặt \(B=\left|x-2019\right|\ge0\)

(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))

Vậy \(B_{min}=0\Leftrightarrow x=2019\)

\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))

Vậy \(BT_{min}=2\Leftrightarrow x=2019\)

17 tháng 11 2019

Bài 2:

\(C=\frac{2019}{\sqrt{x}+3}\)

Vì C có tử = 2019 ko đổi

\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min

+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)

+Dấu ''='' xảy ra khi ......tự lm :))

\(\Rightarrow\)Mẫu đạt min = 3 khi x=...

\(\Rightarrow\)C max = ... khi x=....

17 tháng 11 2019

BÀi 1:

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)

+Dấu ''='' xảy ra khi

\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)

\(\Leftrightarrow x=2019\)

+Vậy \(B_{min}=2\) khi \(x=2019\)

2 tháng 7 2018

a, Vì \(\left(x-1\right)^2\ge0\Rightarrow A=\left(x-1\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1

Vậy GTNN của A=2018 khi x=1

b, Vì \(\hept{\begin{cases}\left(x+2\right)^{2018}\ge0\\\left(y-3\right)^{2020}\ge0\end{cases}\Rightarrow\left(x+2\right)^{2018}+\left(y-3\right)^{2020}\ge0}\)

\(\Rightarrow B=\left(x+2\right)^{2018}+\left(y-3\right)^{2020}+2019\ge2019\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy GTNN của B = 2019 khi x=-2,y=3

2 tháng 7 2018

ta có 

A = ( x - 1 )2 + 2018

=( x - 1 )2 + 2018≥2018

dấu "=" xảy ra khi ( x - 1 )2=0=>x=1

vs min A=2018 khi x=1

19 tháng 12 2021

Đề bài yêu cầu gì?

19 tháng 12 2021

Tìm B

+)Từ đề bài ta thấy:2020-2019=1

=>(x+2y)-(x+y)=1

=>x+y+y-x-y=1

=>y=1

+)Thay y=1 vào x+y=2019 được:

                        x+1=2019

                  =>x     =2019-1

                     x      =2018

Vậy x=2018\(\in\)N(vì nguyên dương)

Vậy GTNNx=2018

Chúc bn học tốt

19 tháng 6 2017

Ta có : \(\frac{x-1}{2017}+\frac{x-2}{2018}-\frac{x-3}{2019}=\frac{x-4}{2020}\)

\(\Rightarrow\frac{x-1}{2017}+\frac{x-2}{2018}=\frac{x-4}{2020}+\frac{x-3}{2019}\)

\(\Rightarrow1+\frac{x-1}{2017}+1+\frac{x-2}{2018}=1+\frac{x-4}{2020}+1+\frac{x-3}{2019}\)

\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}=\frac{2016+x}{2020}+\frac{2016+x}{2019}\)

\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}-\frac{2016+x}{2019}-\frac{2016+x}{2020}=0\)

\(\Rightarrow\left(2016+x\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\text{Mà : }\)\(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)

\(\text{Nên : }\) \(2016+x=0\)

\(\Rightarrow x=-2016\)

1 tháng 1 2018

Giỏi wá!!!!!!!!