K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Linh Linh con  Sữa thì ở cạnh pho mát .

27 tháng 2 2017

=(x^2+y^2+2xy​)+(2x+2y)+3

=((x+y)+2(x+y) +1)+2

=(x+y+1)2+2

vậy Amin=2

27 tháng 2 2017

\(A=x^2+y^2+2xy+2x+2y+3\)

<=>\(A=x^2+2x\left(y+1\right)+y^2+2y+3\)

<=>\(A=x^2+2x\left(y+1\right)+\left(y^2+2y+1\right)+2\)

<=>\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2+2\)

<=>\(A=\left(x+y+1\right)^2+2\ge2\)

29 tháng 7 2018

a, = x^2 -2xy +y^2 +(x^2-2x+1)+2

    = (x-y)^2 + (x-1)^2 + 2

GTNN bằng 2 khi: x-y=0 và x-1=0

Suy ra: x = y = 1

Vậy GTNN của biểu thức trên là: 2 tại x=y=1

b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17

    = -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17

    = -(x-y+1)^2 -(y-4)^2 +17

GTLN bằng 17 khi: x-y+1 =0 và y-4=0

                                   x-4+1=0 và y=4

                                   x=3 và y=4

Vậy GTLN của biểu thức là 17 tại x=3,y=4.

Chúc bạn học tốt.

1 tháng 11 2018

\(C=2x^2+2xy+y^2-2x+2y+1.\)

\(=\left(x^2+y^2+1+2xy+2x+2y\right)+x^2-4x+4-4\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

\(\text{Vậy }MinC=-2\text{. Dấu "=" xảy ra khi và chỉ khi }\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

1 tháng 11 2018

\(C=2x^2+2xy+y^2-2x+2y+1\)       

\(=\left(x+y\right)^2+2\left(x+y\right)+1+x^2-4x+4-4\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-4\ge-4\forall x;y\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Rightarrow}\hept{\begin{cases}y=-3\\x=2\end{cases}}\)

Vậy GTNN của C là -4 khi \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

5 tháng 8 2017

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

21 tháng 9 2021

\(B=2x^2+y^2-2x+2xy+2y+3=y^2+2y\left(x+1\right)+\left(x+1\right)^2+\left(x^2-4x+4\right)-2=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

\(minB=-2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

21 tháng 9 2021

\(B=2x^2+y^2-2x+2xy+2y+3\\ B=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(x^2-4x+4\right)-2\\ B=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x-2\right)^2-2\\ B=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)