K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

A = \(x^2\) - 20\(x\) + 2024

A = (\(x^2\) - 20\(x\) + 100) + 1924

A = (\(x\) - 10)2 + 1924

Vì ( \(x-10\))2 ≥ 0 ⇒ (\(x-10\))2 + 1924 ≥ 1924

     Vậy Amin  =  1924 ⇔ \(x\) = 10 

Kết luận giá trị nhỏ nhất của A là 1924 xảy ra khi \(x\) = 10

27 tháng 7 2023

A = 22 - 20\(x\) + 2024 

A = 4 + 2024  - 20\(x\)

A = 2028 - 20\(x\) 

Ta có đồ thị 

loading...

Không có giá trị nhỏ nhất em nhá

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2020|+|x-2024|=|x-2020|+|2024-x|\geq |x-2020+2024-x|=4$

$|x-2022|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow |x-2020|+|x-2024|+|x-2022|\geq 4+0=4$

$\Rightarrow P\geq 4$

Vậy $P_{\min}=4$. Giá trị này đạt được khi $(x-2020)(2024-x)\geq 0$ và $x-2022=0$

Hay $x=2022$

23 tháng 4 2016

ta có B=X2-20X+101

      B=X2-2.10.X+102+1

      B=(X+10)2+1

          => (X+10)2+1\(\ge\)1 ( VÌ (X+10)2\(\ge\)0)

                 Vậy gtnn của B là 1

8 tháng 9 2017

1)

a)  \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)

\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)

\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)

Dấu bằng xảy ra khi x + 2 = 0

                               x      = -2

Vậy GTNN của M bằng 5 khi x = -2

b)  \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)

\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)

\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)

Dấu bằng xảy ra khi x - 10 = 0

                              x        =   10

Vậy GTNN của N bằng 1 khi x = 10

2)

a)  \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)

\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)

\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)

Dấu bằng xảy ra khi y - 3 = 0

                               y      = 3

Vậy GTLN của C bằng -6 khi y = 3

b)  \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)

\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)

\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)

Dấu bằng xảy ra khi  \(x-\frac{9}{2}=0\)

                                \(x=\frac{9}{2}\)

Vậy GTLN của B bằng  \(\frac{33}{4}\)khi x =  \(\frac{9}{2}\)

8 tháng 9 2017

a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5 

Vì : \(\left(x+2\right)^2\ge0\forall x\in R\) 

Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)

Vậy Mmin = 5 khi x = -2

b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 

Vì \(\left(x-10\right)^2\ge0\forall x\in R\)

Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)

Vậy Nmin = 1 khi x = 10

Bài 2 : 

a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6

Vì \(-\left(y-3\right)^2\le0\forall x\in R\)

 Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)

Vậy Cmin = -6 khi y = 3 

b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x +  \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)

Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)

Nên :  B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)

Vậy Bmin \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)

9 tháng 1

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

9 tháng 1

các bạn giúp mình với mình đang vội.

 

20 tháng 9 2023

a, F(\(x\)) =  (-2 + \(\dfrac{2}{5}\)\(x\) + 1).(\(x\) - 2024) 

-2 + \(\dfrac{2}{5}\)\(x\) + 1 = 0 ⇒ \(\dfrac{2}{5}\)\(x\) = 1 ⇒ \(x\) = \(\dfrac{5}{2}\);

\(x\) - \(2024\) = 0 ⇒ \(x\) = 2024

Lập bảng xét dấu ta có:

           \(x\)                       \(\dfrac{5}{2}\)                       2024
    \(x\) - 2024            -                   -                  0         +
 - 2 + \(\dfrac{2}{5}\)\(x\) + 1             -         0       +                            + 
          F(\(x\)             +        0       -                 0          + 

 

Theo bảng trên ta có: F(\(x\)) >  0 ⇔ \(\left[{}\begin{matrix}\dfrac{5}{2}>x\\2024< x\end{matrix}\right.\)

 

20 tháng 9 2023

b,F(\(x\) ) = \(\dfrac{x-2}{x+5}\)

\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 5  = 0 ⇒ \(x\) = -5

Lập bảng xét dấu ta có:

\(x\)             -5                2          
\(x-2\)        -                 -    0         +
\(x+5\)         -    0         +     0         +
F(\(x\)       +     0          -     0        + 

Theo bảng trên ta có: F(\(x\)) > 0 ⇔ \(\left[{}\begin{matrix}x< -5\\x>2\end{matrix}\right.\)