Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\hept{\begin{cases}2x^2-xy-y^2=P\\x^2+2xy+3y^2=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2-4xy-4y^2=4P\\Px^2+2xy+3Py^2=4P\end{cases}}\)
\(\Leftrightarrow8x^2-4xy-4y^2-Px^2-2Pxy-3Py^2=0\)
\(\Leftrightarrow\left(8-P\right)x^2-xy\left(4+2P\right)-y^2\left(4+3P\right)=0\)
* Với \(y=0\)
\(\Rightarrow\left(8-P\right)x^2=0\Rightarrow\orbr{\begin{cases}8-P=0\\x=0\end{cases}}\Rightarrow\orbr{\begin{cases}P=8\\P=0\end{cases}}\)
* Với \(y\ne0\), đặt \(t=\frac{x}{y}\)
\(pt\Leftrightarrow\left(8-P\right)t^2-\left(4+2P\right)t-\left(4+3P\right)=0\)
- Nếu \(P=8\Rightarrow t=-\frac{7}{5}\)
- Nếu \(P\ne8\Rightarrow\)pt có nghiệm \(\Leftrightarrow\Delta\ge0\Rightarrow\left(4+2P\right)^2-4\left(8-P\right)\left(4+3P\right)\ge0\)
\(\Leftrightarrow16+8P+4P^2-4\left(32-3P^2+20P\right)\ge0\)
\(\Leftrightarrow-8P^2+96P+144\ge0\)
\(\Leftrightarrow6-3\sqrt{6}\le P\le6+3\sqrt{6}\)
Vậy \(MinP=6-3\sqrt{6};MaxP=6+3\sqrt{6}\)
⇒ 8 − P x
2 = 0⇒ 8 − P = 0
x = 0 ⇒ P = 8
P = 0
* Với y ≠ 0, đặt t =
y
x
pt⇔ 8 − P t
2 − 4 + 2P t − 4 + 3P = 0
- Nếu P = 8⇒t = −
5
7
- Nếu P ≠ 8⇒pt có nghiệm ⇔Δ ≥ 0⇒ 4 + 2P
2 − 4 8 − P 4 + 3P ≥ 0
⇔16 + 8P + 4P
2 − 4 32 − 3P
2
+ 20P ≥ 0
⇔− 8P
2
+ 96P + 144 ≥ 0
⇔6 − 3 6 ≤ P ≤ 6 + 3 6
Vậy MinP = 6 − 3 6 ;MaxP = 6 + 3 6
M=x+2y =>x=M-2y
(M-2y)2+2.(M-2y).y+3.y2=6
3.y2-2My+M2-6=0
Pt có nghiệm khi \(\Delta'\ge0\\ M^2-3.\left(M^2-6\right)\ge0\\ -2M^2+18\ge0\\ M^2\le9\\ \)
\(-3\le M\le3\)
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
Ta có: \(\frac{P}{4}=\frac{2x^2-xy-y^2}{x^2+2xy+3y^2}\)
Xét x=0 =>...
Xét x#0 chia cả tử và mẫu cho x2 rồi đặt \(t=\frac{y}{x}\)
Delta=....
\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)
\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)
\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)
dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)
vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)
Giải PT: \(x^2+3y^2+2xy-8x-16y+23=0\)
\(\Leftrightarrow x^2+y^2+16+2xy-8x-8y+2y^2-8y+7=0\)
\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y^2-4y+4\right)-1=0\)
\(\Leftrightarrow\left(x+y-4\right)^2+2\left(y-2\right)^2-1=0\)
\(\Rightarrow\left(x+y-4\right)^2=-2\left(y-2\right)^2+1\le1\)
Dấu "=" xảy ra khi : \(-2\left(y-2\right)^2=0\Rightarrow y=2\)
\(\Rightarrow\)\(\text{│}x+y-4\text{│}\le1\)
\(\Rightarrow-1\le x+y-4\le1\)
\(\Rightarrow3\le x+y\le5\)
Vậy Bmin=3 khi y=2;x=1
Bmax=5 khi y=2;x=3